
RL-TR-95-67, Vol I (of two) 
Final Technical Report 
April 1995 

ULTRA WIDE BAND (UWB) RADAR 
DETECTION ANALYSIS AND 
DEMONSTRATION PROGRAM, 
PHASES I AND II 

Syracuse University 

flty* hJLhC I t,i", :~\ 
%,JU!_ t 3 1995 l\ ^ 

'S"' 

_„.>' 

Sponsored by 
Advanced Research Projects Agency 
ARPA Order No. 9721 

APPROVED FOR PUBLIC RELEASE; DISTR/BUT/ON UNL/M/TED. 

19950707 042 
The views and conclusions contained in this document are those of the authors and should 
not be interpreted as necessarily representing the official policies, either expressed or 
implied, of the Advanced Research Projects Agency or the U.S. Government. 

DTIi QUALITY INSPECTED, 

Rome Laboratory 
Air Force Materiel Command 

Griff iss Air Force Base, New York 



This report has been reviewed by the Rome Laboratory Public Affairs Office 
(PA) and is releasable to the National Technical Information Service (NTIS).  At 
NTIS it will be releasable to the general public, including foreign nations. 

RL-TR-95-67, Vol I  (of two) has been reviewed and is approved for 

publication. 

APPROVED: 

GERARD J. GENELLO 
Project Engineer 

FOR THE COMMANDER 

DONALD W. HANSON 
Director of Surveillance & Photonics 

If your address has changed or if you wish to be removed from the Rome Laboratory 
mailing list, or if the addressee is no longer employed by your organization, 
please notify RL ( OCTS ) Griffiss AFB NY 13441.  This will assist us in maintaining 
a current mailing list. 

Do not return copies of this report unless contractual obligations or notices on a 
specific document require that it be returned. 



ULTRA WIDE BAND (UWB) RADAR DETECTION ANALYSIS AND DEMONSTRATION 
PROGRAM, PHASES I AND II 

Dr. Donald D. Weiner 
Dr. Tapan K. Sarkar 

Dr. Hong Wang 

Contractor:  Syracuse University 
Contract Number: F30602-91-C-0035 
Effective Date of Contract:  15 February 1991 
Contract Expiration Date:   15 December 1994 
Short Title of Work: UWB Radar Detection 

Period of Work Covered:  Feb 91 - Dec 94 

Principal Investigator:  Dr. Donald D. Weiner 
Phone:  (315) 443-4428 

RL Project Engineer:    Clifford Tsao 
Phone:  (315) 330-3576 

Accesion  For 

By  

Distribution/ 

t NT!S     CRA&i 
DTiC     TAB rj 
Unannounced n 
Justification 

rtvaüaoi L.oaes 

Dist 

M 

Avail and /or 
Special 

Approved for public release; distribution unlimited. 

This research was supported by the Advanced Research 
Projects Agency of the Department of Defense and was 
monitored by Clifford Tsao, RL (OCTS), 26 Electronic 
Pky, Griffiss AFB NY 13441-4514. 



r 
REPORT DOCUMENTATION PAGE Form Approved 

OMB No. 0704-0188 
Pubic reporting burden far this colectfan of information is estimated to average 1 hour per response, hdudhg the time for reviewing instructions, searching existing data sources, 
gathering and mai tailing the data needed, and completing and reviewhg thecolection of information Send comments regardhg this burden estimate or any other aspect of this 
colection of Information, inducing st quest »,ris for reducing this burden, to Washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson 
Davis Highway. Suta 1204, Arlngton, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.  

1. AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 

April 1995 
a REPORT TYPE AND DATES COVERED 

Final Feb  91  - Dec  94 

4. TITLE AND SUBTITLE 
ULTRA WIDE BAND (UWB) RADAR DETECTION ANALYSIS AND 
DEMONSTRATION PROGRAM, PHASES I AND II 

6. AUTHOR(S) 
Dr. Donald D. Weiner, Dr. Tapan K. Sarkar, and 
Dr. Hong Wang 

5. FUNDING NUMBERS 
C - F30602-91-C-0035 
PE - 63737D 
PR - 1706 
TA - 06 
WU - 02 

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

Syracuse University 
Electrical & Computer Engineering Department 
121 Link Hall 
Syracuse NY 13244  

8. PERFORMING ORGANIZATION 
REPORT NUMBER 

N/A 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESSES) 
Advanced Research Projects Agency _   r   ,       /„„m^ 
rzm u ^-m-f^ TW Rome Laboratory (0CTS) 

26 Electronic Pky 
Griffiss AFB NY 13441-451(4 

erdieh Ave SE. Kirtland NM 87117-5776  

10. SPONSORING/MONITORING 
AGENCY REPORT NUMBER 

3701 N. Fairfax Dr. 
Arlington VA 22203-1714 

mvm ^ab/w?H 
RL-TR-95-67, Vol I  (of two] 

11. SUPPLEMENTARY NOTES 
Rome Laboratory Project Engineer:  Clifford Tsao/0CTS/(315) 330-3576 
Subcontractor:  Technology Service Corporation 

12a DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution unlimited. 

12b. DISTRIBUTION CODE 

13. ABSTFlACT(Matlrnum200¥(ords) 
This report presents the T-pulse concept.  The first part presents the T-pulse as a 
flexible tool for the analysis of waveforms exhibiting time-frequency localization. 
This is useful when T-pulse processing is performed on receive.  It is shown how the 
T-pulse generalizes the Fourier, Gabor and Wavelet transforms.  The analysis includes 
both the continuous and the discrete cases.  The second part of this report presents 
the T-pulse as a waveshaping technique for target identification through parameter 
estimation.  In this case one desires to transmit a T-pulse. An example is presented 
to illustrate how the T-pulse technique can be used to examine the fine structure of 
the electromagnetic response of a target.  Since the T-pulse may be very narrow band, 
conventional equipment may be used on transmit and receive. Finally, a user oriented 
computer program is presented to illustrate how a T-pulse can be generated. 

14. SUBJECTTERMS T-pulse technique, waveforms, time-frequency 
localization, parameter estimation, electromagnetic 

15. NU ER OF PAGES 

16. PRICE CODE 

17. SECURITY CLASSIFICATION 
OF REPORT 

UNCLASSIFIED 

18. SECURITY CLASSIFICATION 
OF THIS PAGE 
UNCLASSIFIED 

19. SECURITY CLASSIFICATION 
OF ABSTRACT 
UNCLASSIFIED 

20. UMITATION OF ABSTRACT 

UL 
NSN 754001 -280-5500 Standard Form 298 (Rev. 2-8?) 

Presobed by ANSI Std Z3S-18 
298-102 



Contract No. F30602-91-C-0035 

ULTRA WIDE BAND (UWB) RADAR DETECTION 
ANALYSIS AND DEMONSTRATION PROGRAM 

Phase 1:15 Feb 91 -15 June 92 

Final Technical Report 

Vol. I 

Submitted by 
D. D. Weiner 

Principal Investigator 
Syracuse University 

Electrical & Computer Engineering Department 
121 Link Hall 

Syracuse, NY 13244 
Tel/Fax: (315) 443-4428 



PREFACE 

This two volume report presents results from the first phase of the Ultra-Wide Band 

(UWB) Radar Detection Algorithm Analysis and Demonstration Program, conducted for the Air 

Force Rome Laboratory (AFRL) and the Defense Advanced Research Projects Agency (DARPA) 

by Syracuse University (Volume I) and Technology Service Corporation (Volume II). 

Unlike many other UWB programs conducted out in recent years, this research and 

development effort emphasizes surveillance applications utilizing UWB radar technology, 

designed for reliable real-time detection of airborne low-observables. Therefore, much of the 

work in this report (especially in Volume I) focuses on signal processing issues impacting the 

subclutter visibility of UWB radar systems. It's well known that both the time domain resolution 

(i.e., the range cell size) and the capability of the system to discriminate the target and clutter 

are crucial to the system's subclutter visibility. Although the clutter power reduction gain of 

wideband/UWB systems has been well understood since 1950, there have been no documented 

studies of the discrimination capability provided by UWB radar systems, and its associated 

subclutter visibility performance gain. The main objective of this research is to document the 

improved discrimination capability of UWB radar systems in both the velocity and polarization 

domains. As shown in Volume I of this report, UWB technology can offer a subclutter visibility 

performance gain of 20 to 30 dB, over narrow band technology, in addition to its well known 

clutter power reduction gain. This report illustrates the performance potential of UWB wide area 

surveillance systems, which is severely underestimated by the radar community. This conclusion 

applies to UWB systems using either short pulse or spread spectrum technology with large or 

small relative bandwidth. Intuitively speaking, the additional performance gain in the velocity 

(range rate) domain is derived from the fact that the fine range resolution provided by a UWB 

system amplifies the effective velocity difference between the target and clutter, resulting in a 

much more effective discriminant against clutter. Moreover, processing in the polarization 

domain with the use of UWB radar waveforms to resolve the target into multiple dominant 

scatterers eliminates the so-called "signal cancellation" problem associated with any narrow band 

clutter polarization canceler, thus producing a much more reliable polarization discriminant which 

is needed to exploit the additional performance gain. 

Another main objective of this effort is to develop the signal processing algorithms in 

both the velocity and polarization domains that approach the performance potential of a UWB 



surveillance system. In Phase I, our efforts for achieving this objective are limited to a 

preliminary development in the velocity domain, while a major effort is planned for Phase II. 

In Part I of Volume I of this report, two Moving Target Detection (MTD) algorithms are 

developed for UWB surveillance applications. The first one is a simple, nonadaptive algorithm 

designed for ground-based radar applications, where the clutter spectrum is usually quite simple. 

The second algorithm is a more sophisticated adaptive MTD algorithm, designed for the airborne 

UWB surveillance radar applications, where the clutter is severely nonhomogeneous with a very 

complicated angle-"doppler" spectrum. It should be noted that these UWB MTD algorithms for 

weak signal detection are developed not based upon a trivial extension of the narrow band radar 

signal processing algorithms. Although the clutter suppression filter portion of the UWB MTD 

can remain essentially unchanged from that designed for the application to the narrow band radar 

system, the multiple-pulse integration portion, designed for maximally enhancing the target return 

over the multiple-pulse processing interval in the presence of still relatively strong clutter 

suppression residue, demands careful thoughts. This is due to the fact that the target components 

at the output of the clutter suppression filter are significantly distorted from pulse to pulse by the 

clutter suppression filter, especially when the range-walk rate of the target is less than one range 

cell per Pulse Repetition Interval (PRI). If one can assume that the target components at the 

output of the clutter suppression filter are already sufficiently stronger than the clutter suppression 

residue (i.e, with a SCR above 6 dB) and do not have significant distortion, then a "line-up" 

operation can be performed on the already strong target components before the multipulse 

integration if the integration is still necessary. The above special case is investigated by TSC 

and reported in Volume II of this report. The two UWB MTD algorithms developed in Part I 

of Volume I are designed for near optimal weak-target detection, since their multipulse 

integration functions well even if clutter suppression residue is still much stronger than the target 

components at the output of the clutter suppression filter. Hardware implementation of these two 

algorithms, especially of the nonadaptive UWB MTD, is well within the state of the art of 

processor technology. 

In addition to the system performance evaluation and algorithm development, this effort 

also contains laboratory experimentation and demonstration. The objective is to demonstrate the 

performance potential of a UWB surveillance system with selected signal processing algorithms, 

using the existing radar facilities at the AFRL. Due to limited funding, only the demonstration 
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of a UWB system employing an adaptive polarization canceler is planned. Since experimental 

results documenting UWB target polarization characteristics are essentially nonexistent, the 

demonstration has been pursued with much caution. In Phase I a preliminary demonstration of 

the adaptive multiband (i.e, multiple narrow band) polarization canceler developed in Volume I 

Part II of this report is conducted. The purpose of starting with a multiband demonstration is not 

just to gain laboratory experience required for performing the UWB polarization processing 

demonstration. As mentioned earlier, the elimination of the signal cancellation problem 

associated with narrow band polarization processing is the main reason for employing a UWB 

system to obtain the additional significant performance gain in the polarization domain. With 

respect to the elimination of the signal cancellation problem, however, multiple dominant target 

scatterers obtained by using a UWB waveform basically serve the same role as a single-dominant 

scatterer measured using a multiband system. At the same time, the distributed-clutter 

components of concern obtained by these two different systems statistically differ only in their 

power. Therefore, performing a relatively simple, low cost multiband demonstration can 

equivalently illustrate the most critical factors required to eliminate the signal cancellation 

problem. Of course, multiband systems can't emulate UWB systems with respect to range 

resolution, clutter power, etc., and a demonstration of a UWB system with polarization processing 

is still necessary. The results of the successful multiband demonstration are included in Volume 

I Part II of this report, together with the development of the multiband polarization canceler 

algorithm and the evaluation of the performance potential of the UWB system employing 

polarization processing. 

Volume II of this report contains the results of the work performed by Messrs. Allan 

Corbeil and Lee Moyer of TSC under a subcontract from Syracuse University. All three parts 

of this report are basically self-contained with overlap and cross reference minimized. The work 

in Volume I Part I is carried out by Dr. Lujing Cai and Prof. Hong Wang, and in Volume I Part 

II by Mr. CJ. Lee and Prof. Hong Wang, all with Syracuse University. 

Messrs. R. Brown, G. Genello, D. Mokry, C. Tsao (Project Engineer), M. Wicks of AFRL 

and Dr. D. Giglio of DARPA have provided many helpful suggestions during the performance 

of the contract work. Their help is greatly appreciated. 
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1.1    INTRODUCTION 

It is well known that ultra-wideband (UWB) radar systems have much improved range 

resolution, which has been widely used in radar imaging and remote sensing for target signa- 

ture analysis and identification/classification[l,2]. During the past decades, great research 

efforts have been focused on these topics and many encouraging results have been achieved. 

In contrast, how the UWB technology can benefit traditional radar tasks such as target 

detection and tracking remains largely untouched without a systematic investigation. 

From the viewpoint of information theory, one should expect to receive more information 

about the presence, location, and identity of the targets under observation, since the large 

signal bandwidth can provide a wider viewing aspect in the frequency domain. Of course, 

such an advantage should also be important for weak target detection in an increasingly 

hostile surveillance environment. The additional information provided by UWB waveforms 

will improve the quality of the hypothesis test to determine the presence or absence of targets. 

In fact, it is already known that high resolution can largely reduce the clutter power con- 

tained in a single range cell, leading to a significant performance improvement in the presence 

of strong distributed clutter. Also, due to the reduction of the range cell size, the familiar 

point-target modeling is no longer adequate to describe the received target return from the 

transmitted UWB waveform. The individual parts of a target can be well resolved so that 

the multiple dominant scattering (MDS) centers of the target may appear in a number of 

well-separated range cells [3]. The effects of the clutter reduction and MDS target model on 

the system detection performance have been studied in [4,5], where the detectability of the 

range-extended targets as a function of signal bandwidth has been considered based on single 

pulse processing. It has been shown that the performance improvement reaches maximum 

when the system utilizes the so-called critical bandwidth which just resolves the individual 

scatterers. The major reason for the improvement is that the resolved scatterers introduce 

much less fluctuation than the point target formed by summing the scatterers. Further 

increasing the signal bandwidth beyond the critical bandwidth will offer no significant im- 

provement of the detection performance for single pulse processing, as the total clutter power 

involved in the processing will not be further reduced. 



When coherent multiple pulse processing 1 is applied to the target detection for interfer- 

ence rejection, however, it is unknown whether one should use a bandwidth much greater 

than the critical bandwidth, as the so-called range migration may occur for fast moving 

targets. The return from the individual scatterers will "walk" from one range cell to another 

among the pulses during the coherent processing interval (CPI). The range walk has little 

effects on single pulse processing as we can always track the target echo for compensation 

if the interference is sufficiently small[l]. The track-based compensation is not suitable to 

multiple pulse processing as the interference correlation among the pulses would be severely 

destroyed, resulting in very poor interference rejection performance. Furthermore, the useful 

information associated with the range walk data would be neglected. As we will show in 

Part I of this report, proper use of the information can lead to further performance im- 

provement in severe interference environment, since the range walk can provide another 

discrimination means for interference suppression in addition to the Doppler frequency shift 

of frequency/phase modulated systems with small relative bandwidth. 

The above promising features associated with the UWB waveforms doesn't necessarily 

mean we are benefiting from the high resolution all the time. One should note that the 

global false alarm rate will rise as the increase of the range resolution, since the number of 

the test cells increases dramatically. To maintain the global false alarm at a desired level, the 

false alarm at each test cell must be chosen lower than normal, which will certainly degrade 

the system detection performance. Meanwhile, the scatterer distribution across range is 

usually unknown to the system, thus the so-called collapsing loss is inevitable. Clearly, the 

clutter and fluctuation reduction, together with the false alarm adjustment and collapsing 

loss, reflect opposite effects on the system detection performance. In the other words, we 

are playing trade-off on those factors when raising the system bandwidth. 

The modeling and processing complexity also poses a issue for the UWB technology. 

Even if the UWB system uses F/PM waveforms, the relative bandwidth, defined as the 

ratio of the signal bandwidth over its central frequency, can easily goes beyond the small 

relative bandwidth assumption for the UWB waveforms.   Thus the conventional process- 

1 "coherent processing" in this report has a more general meaning than the tradition definition associated 
with the use of phase information. It is loosely defined as processing methods which have pre-thresholding 
integration of the desired signal components over multiple returns. In contrast, noncoherent processing 
means any post-thresholding integration. 



ing and analysis tools good for the narrowband waveform, such as the orthognal receiver 

structure and complex data representation, are no longer adequate for the UWB waveforms, 

necessitating more sophisticated waveform-based modeling and processing. Although one 

can maintain the small relative bandwidth assumption by using a very high frequency band, 

the propagation attenuation at such a high frequency is usually too severe to be tolerable in 

practice. 

Part I of this report is organized as follows. The data model directly based on the received 

waveform is set up in Section 1.2. Section 1.3 derives the waveform-based optimal UWB 

processor, together with its detection performance. The suboptimal UWB processor using 

ad hoc scatterer integration schemes for unknown scatterer separation is also investigated in 

Section 1.3. Section 1.4 conducts the performance comparison of the UWB and narrowband 

systems, where the trade-offs of the clutter reduction versus false alarm adjustment, as well as 

the fluctuation reduction versus collapsing loss, are systematically investigated. We presents 

the conventional canceler-based UWB processor in Section 1.5, followed by Section 1.6 which 

introduces the adaptive implementation of the optimal UWB processor. 
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1.2    DATA MODELING 

Due to the fact that the data model for the UWB waveforms with large relative bandwidth 

(RBW) could be totally different from those under the conventional narrowband assump- 

tions, we begin with continuous waveforms of a more general form. The data modeling with 

either UWB waveforms for small relative bandwidth, or the narrowband waveforms, will be 

considered as special cases. 

2.1     Waveform-based Data Modeling of Moving Targets 

Let xT{t) be the waveform received by a radar system at the front end of its receiv.'. . 

It consists of the returns from the target and interference/clutter, as well as the inte.n:- 

receiver noise 

xr{t) = sr(t) + nc(t) + nn{t) 0<t<T (?     1) 

where T is the total observation time. For coherent multiple pulse processing, the ..arget 

signal sT(t) usually consists of a train of M narrow pulses. For convenience of analysis, we 

introduce the vector representation 

<r(*) 

XTl(t) 

Xr2(t) 
0 < t < T'v (2-2) 

where xrm(t),m = 1,2, ...,M are segmented pieces from xr(t) 

xrm(t) = xr(t + (m-l)T') 0<t<T' (2-3) 

with V being the segmentation interval close to the pulse repetition interval (PRI) of the 

pulse train. Thus the received signal is represented in a vector form 

xr(i) = ss(t) + nc{t) + nB(i)       0 < t < T'p. (2-4) 

The target and interference components contained in the received data will be modeled as 

follows. 
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Target Modeling 

Let St(i) be the transmitted waveform.  Since the signal transmitted at the moment if 

will be received at moment t, the relation between st(t) and sr(t) is given by 

sr(t) = ast(t'), (2 - 5) 

where 

t = t' + 2tx (2 - 6) 

with ti being the single-trip delay time. The attenuation factor a includes the effects of the 

antenna gain, the two-way path loss, and the radar cross section of the target. Consider a 

target with constant radial velocity vs whose range is specified by the equation 

R{?) = Ro + vst'. (2 - 7) 

Thus the single-trip delay satisfies 

R{t' + t1)/c = t1, (2-8) 

which leads to 
ti=R0fc + v.t'/c 

1 - vs/c 

where c is the wave propagation velocity. Substituting it in Eq.(2-6) yields 

t-gja/(l-2>) = t-To 

1 + ^/(1"^) 

where 

Eq.(2-ll) and Eq.(2-12) can be approximated by 

c 

(2-10) 

a = 1 + —/(l - —) (2-11) 
c c 

and 

To= 2Äo/(1 _^). (2-12) 
c c 

Since 

vs « c, (2 - 13) 

as = l + ^ (2-14) 
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and 

r0 

2Ro 

Finally, substituting Eq.(2-14) and Eq.(2-15) into Eq.(2-5), we obtain 

sr(t) = ast((t - TQ) I a). 

(2-15) 

(2-16) 

We see that the received signal return is the time-scaled, delayed, and attenuated version of 

the transmitted waveform. Now we assume the transmitted waveform is a train of M pulses 

with pulse repetition interval Tp 

M 

st(t)=J29(t-(m-l)Tp), (2-17) 
ra=l 

where g(t) is a single pulse waveform of unit energy 

g(t) = < 

Then the target return will be 

g(t)   0 < t < AT 

0        elsewhere 
Ar<Tp (2-18) 

M ,t-TQ 

*(<) = £ g(—- - ("»- W) 
771 = 1 

a 
(2-19) 

For vector representation, we segment sr(t) into M pieces each of which has duration of 

V = aTp. Note that the segmentation interval used for vectorizing sr(t) is usually not equal 

to Tp for the reason of interference suppression. If a is chosen to be very close to 1, i.e., the 

difference Tp - T'v is much smaller than Tp itself, the mth piece will have the form of 

f*\         (+^<         I\T^          rt - Aa{m - \)Tp - TQ 
srm{t) = sT(t + {m- l)Tp) = ag{ ) 

~ ag(t - Aa(m - l)Tp - r0) 0 < t < T'p (2 - 20) 

where Aa = as — a and the approximation is made based on the fact vs <C c and thus as « 1. 

One can see that the effect of the time scaling on the waveform itself is less important than 

the inter-pulse shift caused by Aa. Now the signal waveform has a vector form as follows 

sP(t) = 

Srl(t) 
Sr2(t) 

. SrM(t)  . 

13 



= ag(* - T0) (2-21) 

with g(t) being denned as 

s(t) = 

9(t) 
g(t - AaTp) 

(2 - 22) 

g(t - Aa(M - 1)TP) . 

With sufficiently large signal bandwidth, a target usually exhibits itself as multiple dom- 

inant scatterers (MDS) distributed across certain range extent. If we assume the returns of 

the scatterers have the similar features of a point target as described above, the received 

waveform will be 

sr(t) = X>*(* " T,-) = G(t)a (2-23) 

where J is the number of the scatterers, a,j and Tj are the amplitude and arrival time of the 

jth scatterer, respectively. The matrix G(t), M x J, and a, J x 1 are defined by 

and 

G(0 = [g(*-T!)       g(t-T3) 

0-2 

L aJ J 

S(t~Tj)], (2 - 24) 

a = (2 - 25) 

An example of the MDS waveform is shown in Fig. 1. 

Interference and Receiver Noise Modeling 

Under the assumption that the interference is rough compared to the carrier wavelength, 

the covariance function of the interference/clutter component nc(t) in Eq.(2-1) is found to 

be [6] 

KJUT)= I s(t—)Krlr(t-TA)s*(T-—^)d\ (2-26) :(t,r)= /s(—)^(t-r,AK(—Al 

where Kdr(t,r) is the interference scattering function and ac the time scaling factor due to 

the interference motion 

ac = l + 
2vr (2 - 27) 
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with vc being the interference velocity. Note that we have omitted the integration interval 

for simplicity, which actually goes from minus infinity to plus infinity. We assume the 

interference/clutter is uniformly distributed in the range extent [0,     Lc], i.e., 

*,(,-,,*) = { „*<*-'> U:^. (2-28) 
Then 

Kc(t, T) = Kd(t - r) ILC s( —)5*(L^yA (2 - 29) 
Jo ac ac 

Substituting the multiple pulse waveform s(t) = J2m=i 9(t ~ (m — 1)^P) ^° the above gives 

M   M    'I*   ,t-\      , ._   .,T-A 
üf, :(*,r) = #,(* - r) E E / V ("» - 1)W(— - (n - l)Tp)<fA.    (2 - 30) 

m=l n=l J° <** ac 

Assume that Lc is much larger than the pulse width Ar of g(t), the integration interval 

[0, Lc] can be extended to [-co, , oo] without changing the result of the integral. Define 

the correlation function for the pulse waveform g(t), 

h(r) = Jg(t)g*{t-r)dt (2-31) 

The correlation function of nc{t) becomes 

MM        , 
Kc(t, r) = acKd(t - r) E E M i™ - n)Tp). (2 - 32) 

Now we segment nc(t) the same way as we did to the target return sT(t): 

Nc(<) = K(« + (m-i)r;)}       o<t<r;. (2-33) 

The mnth element of its waveform covariance matrix Kc(t,r) is 

rcmn{t, r) = E{nc(t + (m - 1)T>;(T + (n - 1)^)} 

' = Ke(t + (m - l)rp,T + (n - i)rp) 

= acKd(t - r + (m - n)T>) £  E ^ ~ T + (m ~ "K _ (m' _ n/)Tp). 
m'=ln'=l Öc 

£ — r + (m — n)T' 
= acKd(t - r + (m - n)T'p)h{ i L± _ (m _ n)Tp). (2 _ 34) 
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Taking V = acTp, we have 

rCmn{t, T) = acKd(t -r + (m- n)T'p)hC—^) 
CCr 

^Kd((m-n)Tp)h{t-r) (2-35) 

where we have used the facts that Kd{r) changes very slow within the pulse duration Ar 

and ac « 1 for the approximation above. Thus 

Kc(<,r)=RcÄ(*-r) (2-36) 

where Rc is the interference inter-pulse covariance matrix denned by 

Rc = {Kd((m-n)Tp)}. (2-37) 

With very large bandwidth, h(r) is very narrow so it can be approximated by 

h(r) K J \h(t)\dt6(T) 

= |G(/0)|
2
*(T), (2-38) 

where G(f) is the Fourier transform of g(t) and f0 its carrier frequency.    Consider the 

definition of the equivalent rectangular bandwidth [7] 

I\g(t)\2dt 
B     2|G(/o)|2 

1 

we get 

(2 - 39) 

Kc(i,r) = J_Rc^-r). (2-40) 

Clearly, a large bandwidth shows a advantage against the interference/clutter. 

Assume that the receiver noise nn(t) is a white process, i.e., its covariance function is 

specified by 

Kn(t, r) = EK(i)<(r)} = ^S(t - r) (2 - 41) 

where JV0 is the noise power spectral density level.   For its vector representation Nn(i) = 

{nn(t + (m - l)acTp)},    0 < t < acTp, the waveform covariance matrix is thereby 

Kn(t, r) = E{Nn(*)N?(r)} = ^I8(t - r) (2 - 42) 
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where I is an M x M identity matrix. 

Therefore, the total waveform covariance matrix of the interference and receiver noise is 

given by 

K(t,r) = E{(NC(<) + NB(t))(Nc(r) + N„(r))"} = (^Rc + ^I)6(t - r) = RS(t - r). 

(2 - 43) 

2.2    Some Special Cases 

The data model given in the previous subsection is more general in the sense that it is 

suitable for all types of waveforms. In this subsection we will consider two special cases: (1) 

the waveform that has very large bandwidth, but its relative bandwidth is less than 10%; 

(2) the narrowband waveform. 

UWB waveform with small relative bandwidth 

We assume that the single pulse waveform has the following form 

g(t) = A{t)cos(2irf0t + 0(t)) (2-44) 

where A(t) and 6(t) are the amplitude and phase modulation of the waveform, and the carrier 

frequency /0 is very high compared to the bandwidth B of A{t) and 9(t). As the relative 

bandwidth RBW = B/f0 is less than 10%, the conventional orthogonal receiver using in- 

phase and quadrature channels can be applied to reduce the effect of phase fluctuation. Thus 

the complex representation means for the target return is valid here 

g{t) = A(t)ei2"fot+ieW (2 - 45) 

Substituting it into Eq.(2-22) gives 

g(<) = 

A(t)ei2irfot+ieW 
A(t - AaT )e^fo(t-&o<Tp)+ie(t-AaTp) 

. A(t - (M - ljAaT^e^C"^"1^^'^''-^-1^^) 

Dt'27r/o< 

Ä(t) 

Ä(t - AaTp)e-
i2*foAaTp 

Ä(t - (M - l)AaTp)e-
i2<M-^foAaT" 

(2 - 46) 

18 



where Ä(t) — A(t)et9^. Obviously, the high frequency term before the vector can be removed 

by passband-to-baseband conversion. Thus after the passband-to-baseband and orthogonal 

preprocessing, the signal envelop vector becomes 

g(*) = 

A(t) 
Ä(t - AaTp)e-

i2vf°AaT" 

_ Ä(t - (M - l)Aarp)e-
t'2^M-1)/oAaT" _ 

Ä(t) 
Ä(t - AaTp)e~i2*Af 

Ä(t - (M - ljAaT^e-*^-1'^ _ 

where 

(2 - 47) 

(2 - 48) = /* -/o(l -a)Tp. 

with fs = 2f0vsTp/c. Apparently, fs is the conventional normalized Doppler frequency shift 

for moving targets. It is seen from the above that the target movement not only cause 

Doppler shift on the phase of the sinusoid-based signal, but also results in the inter-pulse 

shift on its amplitude, which is often referred to as "range walk". We define the range walk 

rate 

p = BTp2v/c, 

which reflects the number of the resolution cells the target travels between the two adjacent 

pulses. 

Narrowband Waveform 

The form of the narrowband waveform is the same as Eq.(2-44), but A(t) and 6{i) now 

have a very narrow bandwidth. With T'v = Tp, Eq.(2-22) becomes 

g(<) = 

Ä(t) 
Ä{t - asTp)e-

t2*f> 

Ä(t - (M - \)asTp)e-
i2<M-lV> 

1 

Ä(t) 
-i2irf, 

,-i2*{M-l)f, 

(2 - 49) 
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The last expression is obtained by using the fact A(t — (m — l)AaTp) « A(t),m = 1,2, ...,M, 

since the narrowband envelop A(t) changes too slow to make difference. Define the signal 

vector 

s = 

1 

(2 - 50) 

e-i2*(M-l)f, 

Eq.(2-49) becomes 

g(t) = Ä{t)s. (2-51) 

As shown by Eq.(2-23), the target returns are actually composed of many scattering centers. 

So the total received target waveform for the narrowband case is 

§r(*) = I] äjg(t - TJ) = J2 äjMt ~ Tj)s ~ ä0Ä(t - r0)s, (2 - 52) 
3 3 

where a0 = Y^j ö.j and r0 = Ylj Tj/J- Here again, we have used the fact that A(t) is nar- 

rowband to make the approximation. We note that 50 will fluctuate since it is the sum of 

many complex variables of random phases, even though each individual scattering center 

may have little fluctuation. We will model ö0 as a Gaussian random variable with zero mean 

and variance a2
s, which represents the total received energy of the point target. 

For interference part, if we take T'v = Tp, Eq.(2-34) becomes 

rcmn(t,r) = acKd((m - n)Tp)h (* " T + ^ " n)Tp - (m - n)Tp) 

2v 
« Kd{{m - n)Tp)h(t - r - (m - n)Tp—). (2 - 53) 

With the narrowband waveform given by Eq.(2-45), it is easy to show that 

h(T + A)nei2*f°Ah(r), (2-54) 

for a small increment A. Then we have 

rcmn(t, r) « Kd{{m - n)Tp)e-
i2^m-n^h(t - r) (2 - 55) 

where fc is the normalized Doppler frequency of the interference. So the waveform covariance 

matrix of Nc(i) can still be expressed as 

Ke(t,T) = Rch{t-T). (2-56) 
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But Rc is now given by 

Rc = {Kd((m - n)Tp)e-
i2<m-n^} (2 - 57) 

which involves with the interference Doppler shift. 
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1.3    OPTIMUM DETECTION OF OVER-RESOLVED MOVING TARGETS 

3.1    Waveform-based Optimum UWB processing 

With the general data model presented in Section 1.2, this section will derive the optimum 

processor directly based on the received waveform. The interference statistics and target 

characteristics are all assumed to be known to the system. Therefore the optimum processor 

such derived explores the performance potential achievable by a UWB system. 

3.1.1    Waveform-based Optimum Processor and Its Detection Performance 

Based on the received UWB waveform x(t), the waveform-based optimum processor forms 

its decision rule for over-resolved target detection in the following way: 

»?=xHC-1x irio, (3-1) 

where 

x =  / G(*)HR_1x(i)cft       J x 1 (3-2) 

and 

C = J G{t)HYClG{t)dt      JxJ. (3-3) 

The derivation is given in Section 1.3.1.3 as a appendix. 

It is seen that the above optimum UWB processor requires the exact knowledge of the 

interference statistics R and the target waveform G(f), which is controlled by the pulse shift 

rate difference A a = as — ac and the scatterer arrival time T*. 

Fig. 2-3 illustrates the waveform-based optimum UWB processor, from which we see 

that it breaks into several major parts: 

• optimum interference canceler 

• multiple pulse correlator 

• incoherent inter-scatterer integrator. 

The detection performance of the UWB processor is shown in Section 1.3.1.3 as follows: 

/•oo   77^/2-l 
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Hr-1, TJ = XnC-1X 

scatterer integrator 

Fig. 3. Structure of the waveform-based optimal UWB processor: 

Inter-scatterer integrator. 
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and 
J/2-1 

n        2 

•Jrm 
h/2-i(2VTt) (3 - 5) 

>V0 

where 

7 = aHCa/2, (3 - 6) 

and Ij/2-i(-) is the («7/2 — l)th order modified Bessel function of the first kind. 

3.1.2     Optimum Processing with Some Particular Waveforms 

The optimum processing provided in the previous section is directly based on the received 

waveform without any preprocessing. Even though it is necessary for the signal waveform 

having a very larger relative bandwidth, the implementation complexity would be greatly 

increased as we have to process the data at very high frequency. For the waveforms with 

small relative bandwidth (either narrowband or ultra-wideband), however, we will see below 

that the complexity problem can be largely avoided. 

Optimum processing with UWB waveforms of small relative bandwidth 

As discussed in Section 1.2, the orthogonal receiver structure and passband-to-baseband 

conversion are applicable to the UWB waveform with small relative bandwidth. Let x(t) be 

the waveform after the preprocessing. It consists of 

Z(t) = sr{t) + hc(t) + hn(t) (3 - 7) 

where nc(i) and hn(t) are complex random vectors representing the interference and noise, 

respectively, and 

5r(*) = Eai8(*-ri) = G(t)ä (3-8) 

with g(i) being specified by Eq.(2-51) and dj the complex amplitude of jth scatterer. We 

note that x(t) is within baseband and its carrier component is removed. 

Applying the optimum processing given by the previous subsection to the complex wave- 

form, we have the test rule 

T? = X
H

C-
1
X fr/o (3-9) 
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where x and C denote 

and 

x = / G(<)HR_1x(*)^      Jxl (3-10) 

C = / G(i)*R_1G(i)<ft      JxJ. (3-11) 

We note that nc(i) and n„(i) become the complex Gaussian processes if nc(t) and nn(<) 

are real Gaussian. So in a similar way to Section 1.3.1, the detection performance is found 

to be 

Pf = eM-Vo)tjJ^ (3-12) 

and ^ 
2 

lj-x{2^i)dt (3-13) 
'»70 

where 

7 = ä*Cä. (3 - 14) 

We note that it differs from Eq.(3-4)-Eq.(3-6) of the real case. 

Optimum processing with narrowband waveform 

From Eq.(2-52) 

sT(t) = d0Ä(t — T0)s. (3 - 15) 

Substituting it into Eq.(3-10) and Eq.(3-ll) yields 

C = f Ä*(t - r0)s
//R-1si(i - T0)dt = s^R-'s, (3-16) 

and 

x = f Ä*(t - r0)s
HR-ax(i)^ = sHR_1y, (3 - 17) 

where we have assumed that A(t) has unit energy and y is obtained by the matched filtering 

J Ä*(t-T0)x(t)dt. (3-18) 

Note that R now is defined by KC/2B + N0I/2, which involves the Doppler frequency shift 

of the interference. 
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The test statistic now becomes 

stfR-iyytfR-'s _     „   2 
(3- -19) 77 -        s"R-is        ~ |W  y| ' 

with the weight vector being defined 

R-as 
(3- -20) W_ [s^R^sjd^)' 

We see that it turns into the familiar optimum processor of the conventional form 

As we have discussed in Section 1.2, the deterministic assumption no longer holds for 

the signal amplitude do- We model it as a complex Gaussian variable with zero mean and 

variance a2
s.   Thus the mean of y is both zero under the hypotheses Ho and H] , and its 

covariance matrix is found to be 

n    /  N      / E(xx^) = R                               under H0 
^°V(X) - |   E(xxtf) = R + aHssH                     under Hi    ■ (3- -21) 

Then 77 has a x2 distribution under both H0 and Hi 

p(rj\H0) = exp(-77) (3- -22) 

and 

p(*/l-ffi) = exp(-7//(l+7)) (3- -23) 

with 7 being defined as 

7 = a? s^R-V (3- -24) 

Therefore the probabilities of false alarm and detection are found to be 

Pf = exp(-r/0) (3- -25) 

and 

P, = exp(-W(l+7))- (3- -26) 

3.1.3    Appendix: Derivation of The Optimum UWB Processor 

For convenience of derivation, we first introduce the vector likelihood function. 

Assume the received data x(2), Mxl, has a waveform covariance matrix given < is follows 

K(«,T) = R/C(*,T). (3- -27) 
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Denote <ßk(t), fc = 1,2,..., as the eigen functions of the covariance kernel n(t, r). The received 

signal vector x(<) can be expanded by the Karhunen-Loeve expansion: 

oo 

x(t) = $>*&(*) (3~28) 

where 

xfc = /x(t)«(t)eft, Mxl. (3-29) 

Under H0, i.e., no-signal-presence hypothesis 

E(xfc) = 0       fc = l,2,... (3-30) 

and their covariance matrices are found to be 

Cov(xfc,x() = E(x,xf) = R\k8k-h (3 - 31) 

where Xk is the eigenvalue of /c(*,r) corresponding to the eigenfunction <£*(<), and <^_, has 

a non-zero value equal to 1 only if k = I. 

Under the assumption that x(J) is a multivariate Gaussian process, xk,k = 1,2,... are 

also multivariate Gaussian vectors independent each other based on Eq.(3-31). Thus the 

joint distribution of the first K vectors is given by 

/(xfc,fc = l,2,...,Jf|ffo) = cöexp-ii;^y^ (3-32) 
L k=i       Ak 

where CQ is a constant independent of xfc. Replacing xfc in the above by Eq.(3-29) gives 

p(x*,fc = 1,2,...,K\H0) = coexp-^j JxitfR^K^faTfrWdtdT (3-33) 

where 

K-I(i,T) = £Ml«l). (3-34) 

Let K approach to infinity, we have 

,-.(,,,) = f;«S«M (3-35) 

which is referred to as the inverse kernel of K,(t, r). It is known that K,(t, r) and K~l(t, r) has 

the following relation 

J K(t,u)K-\u,T)du = 8{t-T). (3-36) 
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The likelihood function with K approaching to infinity now becomes 

f(x(t)\H0) = c0exp--JJx(t)HR-1K-1(t,T)x(T)dtdT. (3-37) 

In particular, if K(£, r) = 6(t — r) as given in Eq.(2-43), we have 

f(x(t)\H0) = c0exp~JJx(t)HR-1x(t)dt. (3-38) 

Similarly, the likelihood function under H\ is given by 

p(x(<)|#i) = coexp-^y J(x{t) - s(i))HR_1(x(0 - s(<))<ft. (3 - 39) 

Under the multiple dominant scatterer (MDS) data model, the signal component sr(t) con- 

sists of the returns from all the scattering centers 

j 

sr(t) = Y, ajg(t - Tj) = G(*)a (3 - 40) 

where TJ is arrival time of the jth scatterer, and G(t) and a are specified by Eq.(2-22) and 

Eq.(2-25). Substitute Eq.(3-40) into Eq.(3-39), and expand the exponential part, we have 

J{x(t) - G(t)a)i/R"1(x(i) - G(t)a)dt 

= /x(t)HR_1x(<)d< - a"x - x^a + affCa 

= J x(i)ffR_1x(0^ + [a - C-lx]HC[a - C^x] - xffC"1x (3-41) 

where x and C denote 

x = J GitfR^x^dt       Jxl (3-42) 

and 

C = J GitfR-'G^dt      JxJ. (3 - 43) 

As we are assuming the amplitudes of the scatterers are-unknown, the likelihood ratio test 

is performed in the following way 

A = max/(x(i)|ff1)//(x(i)|ffo) f A0. (3 - 44) 
a *o 

By Eq.(3-41), the maximum of f(x(t)\Hi) is achieved at a = C-1x and is given by 

= Co exp(-- J x(f)i/R-1x(t)^ + xHC_1x) (3 - 45) 
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The test rule then follows 
,i/r-i„/o\ > 

Obviously, it is equivalent to 

exp(xwC-1x/2) <A0. (3-46) 

7] = xHC-1xir]0, (3-47) 

since exp(x) is a monotonically increasing function of x. 

To derive the detection performance of the above UWB processor, we notice that the 

J x 1 vector x is also Gaussian distributed with covariance 

Cov(x) = C, (3 - 48) 

and its mean differs under different hypotheses 

!-./■  \      I  0 under   H0 ,„     ,„. 
EW = (ca under   ^   ' <3 " 49> 

Thus 77 will have x2 distribution under H0 and noncentral x2 distribution under Hi, i.e., its 

probability density function is given by 

„J/2-1 

fv(v\H0) = WT7^e~V (3~50) r(j/2) 

Y 
J/2-1 

2 
1 

.7. 

or 

fv(V\Hi) = e-(''+f)   i     "    IJ/2_1(2V^) ' (3-51) 

where 7 is the noncentralilty 

7 = aHCa/2. (3 - 52) 

and Ij/2-i(-) is the (J/2 - l)th order modified Bessel function of the first kind. 

Then the probabilities of false alarm and detection can be obtained by integration: 

and 

roc ■n ' 

T(J/2f   "" 

/•oo Y 
.7. 

j/2-1 
2 

Ij/2- 

(3 - 53) 

(3 - 54) 
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3.2    Suboptimal UWB Processor-Unkown Scatterer Separation 

The application of the optimum processor described in Section 1.3.1 requires a priori 

information about the range distribution of the scatterers, which is not usually available to 

the processor in practice. Obviously, processing without knowing the exact target geometry 

will lead to some performance degradation. In this section, we will study the suboptimum 

processor which utilizes some ad hoc inter-scatterer integration schemes while still assumes 

the known interference covariance. 

3.2.1     Ad Hoc Inter-Scatterer Integration Schemes 

As the arrival time of the scatterers is unknown, the time interval of interest is divided 

evenly into N range cells. The centers of the range cell, denoted by 77, / = 1,2,..., iV, are 

assumed to be the arrival time of the scatterers. Thus we can obtain the test data for each 

range cells 

x =  / G(i)i/R-1x(t)^       J x 1, (3-55) 

where the matrix G(t),M x N, consists of the signal vectors for all the range cells 

G(t) = \g(t - n)    g(t-r2)     •••      g(t-rN)}. (3-56) 

The separation between the adjacent range cells, denoted by Ad, is chosen small so that 

the time interval of interest can be densely covered. Thus the total number of the range 

cells N is usually much greater than the actual number of the scatterers J. This in turn 

will introduce some performance loss since the interference and noise components in those 

non-scatterer-existing range cells are unnecessarily included. The performance loss should 

differ with the ways how the data from the range cells enter into the hypothesis test. Given 

below are some possible choices of ad hoc scatterer integration schemes. 

(a), integration-of-all. All the data from the range cells are simply used to perform the 

hypothesis test, i.e., the test statistic is formed by 

71 = x.HC~1x irjo (3-57) 

where C is decoupling matrix for all the range cells 

C = / G(t)HR-lG(t)dt      NxN. (3 - 58) 
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The detection performance is still governed by Eq.(3-52)-Eq.(3-54), but with large portion 

of the elements of a being zero. 

(b). integration-of-m. The m largest elements of the data vector x are integrated to form 

the test statistic, i.e., the hypothesis test is performed by 

ri = x'HC-1x'I>rio (3-59) 

where x' consists of the m largest elements of x, and C is calculated in terms of Eq.(3- 

58) with G(t) being formed by those arrival time indexes corresponding to the m largest 

range cells. We note that the term of C'_1 is still included to perform the inter-scatterer 

decoupling, which is shown necessary by computer simulation. 

(c). m-out-of-N. All the data from the range cells are compared with a chosen threshold 

770. If at least m of them surpass the threshold, target presence is claimed. Otherwise, reject 

the hypothesis Hi. 

(d). maximum-of. The largest element of x is simply taken out to perform the hypothesis 

testing. 

It is easy to see that the integration scheme (a) and (d) are actually the extreme cases 

of (b) if we set m = N and m = 1, respectively. 

3.2.2    Performance Evaluation by Computer Simulation 

Because of the statistical dependence among the elements of x, it is difficult to per- 

form analytical performance analysis for the ad hoc scatterer integration schemes except 

the integration-of-all. Therefore the performance evaluation of the integration schemes per- 

formed in this subsection will be largely based on computer simulation. 

Under the assumption that the received waveform x(£) is a Gaussian process, it is not 

necessary to start the computer simulation from the uneasy job of generating the continuous 

waveform, since the data vector x is found to be a Gaussian distributed random vector with 

its covariance matrix specified by C and mean vector given by 

E{x} = Ca (3 - 60) 

where C, N x N, depends on the single pulse waveform and the range cell separation Ad. 
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We choose the rectangular linear FM waveform in the performance evaluation, i.e., 

g(t) =    i_rect(  '  ) cos(2ir{Bt2/Ar + f0t))                           (3 - 
v AT        AT 

61) 

where /0 is the carrier frequency and 

*M      /I                              -1/2 < < < 1/2                             , 
rectW = \ 0                             elsewhere             "                       ^ 

62) 

Its correlation function is found to be [8] 

si„2,rfMl - |Br|/7.) COS(2T/   ,     -n2xflr(l - |flr|/7.) „^BrlRBW) 
y '                   2-KBT                                                  2-KBT 

(3 - 63) 

where 7C = ATB is the pulse compression ratio and RBW the relative bandwidth. In 

practice, 7C is chosen very large so that 

h(r) « Sm 2nBT COS(2ITBT/RBW).                                  (3 - 
2'KBT 

-64) 

This type of waveform is quite commonly used in radar pulse compression for improving 

range resolution. The amplitude spectrum of the waveform with jc = 100 and RWB = = 0.5 

is shown in Fig. 4. 

To calculate C, we note that the kith, element of C is 

MM 

cik = I SH(t -(I- 1) A^R-'gC* - (k - l)Ad)dt = E E rmngikmn             (3 - 
•"                                                                                                               m=l n=l 

-65) 

where rmn is the mnth element of R"1 and 

gikmn = jg*(t -(I- l)Ad-(m - l)AaTp)g{t - (k - l)Ad-(n - l)AaTp)dt 

= f g(t)g*(t -(I- k)Ad - (m - n)AaTp)dt 

= h((l-k)Ad+(m-n)AaTp).                                    (3- -66) 

Denote 

p = BAaTp                                                     (3 - -67) 

and 

v = BAd.                                                     (3 - -68) 
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Obviously, Eq.(3-67) defines the difference of the range walk rate of the target and interfer- 

ence, and Eq.(3-68) is the normalized range cell separation with respect to the system range 

resolution. Then we have 

_ sin27r((/ - k)v + (ro - n)p){\ - \(l - k)v + (m - n)p\/fc) 
9lkmn ~ 2*r((Z - k)v + (ro - n)p) 

x COS(2TT((7 - k)v + (m - n)p)/RBW). (3 - 69) 

For the inter-pulse covariance matrix R, we assume 

R = ^R* + y I (3 " 7°) 

where a^ is the clutter power and 

Rc0 = {exp-2(7rCr/(m-n))2}, (3-71) 

with erf being the parameter controlling the interference spectrum spread. We note that 

the interference covariance setting given in Eq.(3-71) corresponds to a Gaussian shaped 

spectrum. 

As we mentioned before, large portion of a will be zero as there are only few scatterers 

distributed in the range extent of interest. We are interested in the general behaviors of the 

processors with respect to the scatterer range distribution. Thus, given the number of the 

scatterers, we assume each scatterer is randomly scattered in the N range cells with equal 

probabilities and energy. Since the waveform is real under the large relative bandwidth 

assumption, the phases of the scatterers is represented only by the sign of the scatterer 

amplitudes, which is assumed to change between plus and minus with equal probability. 

The computer simulation results are given in Fig. 5-Fig. 7. Due to computer resource 

limit, the probability of false alarm is set to Pj = 10-3, although a practical value should 

be smaller. The total number of the range cells under test is chosen to be N = 20 with the 

normalized range cell separation v — 1. With p = 0.8, INR= 2al/N0 = 50dB, the closeness 

of the detection performance to the optimum is examined for the four scatterer integration 

schemes. Fig. 5 compares the detection performance of the int-of-m and m-out-of-N schemes. 

The actual number of the scatterers in the figure varies from 1 to 9, giving a sparse scatterer 

range distribution.   The additional SNR, defined as the extra signal-to-receiver-noise ratio 
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required to catch up the detection performance of the optimum, is drawn as a function of the 

number of scatterers. Different m settings are set for both integration schemes: fixed case 

(m=5) and matched case (m = J) in order to see how sensitive the detection performance 

is to the selection of m. Fig. 6 gives the comparison of the int-of-all, int-of-m, and max-of 

schemes with the same parameter settings, followed by Fig. 7 as an example of the detection 

performance when J = 5. 

Based on Fig. 5-Fig. 7, we have the following conclusions 

(1) m-out-of-N performs worse than the int-of-m almost all the time. Its performance 

degradation becomes more severe when m is over-estimated as compared to the actual num- 

ber of the scatterers. In contrast, the int-of-m shows much less sensitivity to the selection of 

the value of m. 

(2) If J = 1, max-of has a better performance than the others. When J increases, 

however, the int-of-all and int-of-m pick up rapidly. In fact, at J = 3, the two already 

outperforms the max-of. 

(3) If J is less than a quarter of iV, the int-of-m delivers a best performance if m matches 

the number of the scatterers. 

(4) When J is greater than a quarter of N, there is not much difference between the 

matched int-of-m and int-of-all. In this sense, exactly knowing J is not important since 

int-of-all already achieves the desired performance for a quite wide range of J. 

(5) When J > N/2, both int-of-m and int-of-all show a very small performance degrada- 

tion (< ldB). 

Based upon the above facts, int-of-m and int-of-all are recommended depending on the 

number of the scatterers. We are in favor of the latter one as it shows a good detection 

performance over a wide range of J, and doesn't require the knowledge of J. 
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1.4    PERFORMANCE COMPARISON OF NARROWBAND AND UWB SYS- 

TEMS 

In this section, we will compare the detection performance potential achievable by the 

narrowband (NB) and UWB systems. The optimum processors under comparison are the 

waveform-based optimum UWB processor given in Section 1.3.1.1, and the conventional 

optimum narrowband processor specified by Eq.(3-19)-Eq.(3-20) of Section 1.3.1.2. 

As the NB and UWB systems differ significantly in their range resolution, target model- 

ing, and level of interference, it is not easy to make a fair comparison in a straightforward 

way. It would be beneficial for us to carry out the investigation by steps so that the prob- 

lems can be isolated for easy understanding. In general, the UWB gains include the clutter 

reduction gain, the fluctuation reduction gain, and the discrimination gain, each of which 

shows up under different bandwidth. In order to individually identify the gains, we classify 

the following four typical cases in terms of the signal bandwidth: 

Case 1. The bandwidth of the system, denoted by i?i, is narrow, so that the signal 

return can be considered as point target, which corresponds to the data modeling discussed 

in Section 1.2.2. Obviously this is the conventional narrow band system. 

Case 2. The bandwidth B2 of the system is greatly increased, but not to a level at which 

the multiple dominant scattering centers of the target can be resolved, so that the point 

target assumption still holds. For comparison, we will set B2 equal to the so-called critical 

bandwidth, which is just about to resolve the individual scatterers. For this case the target 

is comparable in size to the range resolution. 

Case 3. The system bandwidth is well beyond the critical bandwidth, so that the signal 

returns consist of the well-resolved scatterers as modeled in Section 1.2.1. For moving targets, 

the pulse shift due to the scatterer movement will result in sufficient Doppler shift, but the 

corresponding range walk is essentially small. 

Case 4. The system bandwidth is further increased. The range resolution is so fine that 

the return from the individual scatterers will "walk" form one resolution cell to another 

among the pulses during the coherent processing interval (CPI), which is usually referred to 

as range walk or range migration. 

Obviously, the bandwidth of the above four cases follows the order of B\  <C B2  <C 
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B3 -C B4. For convenience of discussion, parameters associated with difference cases will 

be distinguished by an additional subscript corresponding to the case number whenever 

necessary. Performance evaluation will be carried out in the following on a basis of case-to- 

case comparison. We will see how the bandwidth will dominantly affect the system detection 

performance. 

4-1    Comparison of Cases 1 and 2: Clutter Reduction Versus False Alarm 
Adjustment 

The performance comparison is conducted for Case 1 and Case 2 in this subsection. 

Basically, there is not much fundamental difference between the two as the point target 

modeling is suitable for both cases. Since the range-cell size resolved by the bandwidth B2 

becomes much smaller than that of B\, however, the associated interference power contained 

in each range cell will be greatly reduced. Of course, less clutter power implies better target 

detectability. The clutter reduction effect is clearly indicated in Eq.(2-40) of Section 1.2.1, 

where the effective interference power is inversely proportional to the bandwidth. Define the 

average interference power for both cases 

*a = ^tr(^)/M (4 - l) 

and 

<4 = 2^-tr(R,)/Jf. (4 - 2) 

Then we have the interference power constraint for the comparison 

'c2 = /Vc
2
2, (4 - 3) 

where ß\ stands for the bandwidth ratio ß\ = B2/B\ for the two cases. 

In the mean time, also due to the smaller rang-cell size, the system with B2 will have 

to process more range cells for a given spatial volume, which in turn would introduce more 

global false alarm. Maintaining the same level of global false alarm in the given volume 

requires lower false alarm rate in a single range cell and thus will degrade the detection 

performance. Under the assumption that the decision are independently made in each range 

cells, it is easy to find the probability of false alarm in each range cell for the two systems, 
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denoted by Pf\ and P/2, satisfies 

Pfi = 1 - {1 - P,i)m (4-4) 

to maintain the same level of global false alarm rate. 

It is clear that the constraints imposed by Eq.(4-3) and Eq.(4-4) have opposite effects on 

the system detection performance. In other words, when the bandwidth increases, we are 

playing trade-off between the interference power and probability of false alarm. 

Before we proceed further, some other conditions are specified below for convenience of 

conducting comparison: 

(1) the noise spectrum level N0 and signal variance a] of the two systems are set to equal. 

(2) the interference covariance matrix Rc is defined by 

^ _ 0.2 re-2(7r(r/(m-n)):2+«2^(m-n)/c1 (4 _ 5) 

where 07 is the parameter controlling the interference spectrum spread, ac the interference 

power, and fc the normalized Doppler frequency of the interference. Recall the difference 

between fc and fs is denoted by A/ = fs — fc. 

(3) for both cases, we use the same optimum processor as given in Eq.(3-19)-Eq.(3-20) 

Section 1.3.1.2. Thus the analytical detection performance the of optimum processor is found 

in Eq.(3-24)-Eq.(3-26). 

In Fig. 8, the detection performance curves as a function of signal-to-receiver-noise ratio 

(SNR) are plotted for investigating the performance loss due to the false alarm constraint 

governed by Eq.(4-4). In order to single out the effects of the Pj constraint, the interference 

power constraint in Eq.(4-3) is omitted. Instead, we purposely set the interference power 

equal, not changing with the bandwidth. It is seen that even for a very large bandwidth 

ratio, the detect performance loss is negligibly small (< 2dB ). In fact, the performance 

loss factor, defined as the ratio of SNR's requires by the two systems to achieve the same 

probability of detection, is found to be 

«™- WtrwSwr (4"6) 

We note that the performance loss factor is independent of the signal and interference charac- 

teristics, and is related to the logarithm of the probability of false alarm only, which indicates 

a slight change even if P]\ varies several orders of magnitude. 
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Fig. 9 illustrates the effects of the interference power constraint with the probability 

of false alarm unchanged. For INRi=60dB, 07 = 0.06, and A/ = 0.2, the performance 

improvement is apparent. It is easy to see that the performance gain, measure by the amount 

of SNR adjustment to maintain the same Pd, depends on the severity of the interference 

environment. It approaches its maximum (101og(/ö1)dB) for tough interference conditions 

such as high INR, small A/, and large aj. 

The joint effects of the two constraints are shown in Fig. 10. The bandwidth ratio is set 

to ßi = 10. The dotted line in this figure is drawn to illustrate a intermediate result, which 

imposes the interference power constraint only. Obviously, the gain due to the reduction 

of the interference power is much larger than the loss caused by the false alarm constraint. 

In other words, the trade-off between the two constraints can lead to significant detection 

performance improvement, exhibiting the advantages of increasing signal bandwidth. 

4-2    Comparison of Cases 2 and 3: Fluctuation Reduction Versus Collaps- 
ing Loss 

The goal of this subsection is to investigate the effects of the multiple dominant (MDS) 

target model on the system detection performance as compared to the point target model. 

The major difference between the two models is that the MDS target model can largely reduce 

target fluctuation and the resolved scatterers are distributed in a number well-separated 

range cells. 

Although the interference power in a single range cell will continually drop as we further 

raise the signal bandwidth to the level in Case 3, the total amount of the interference power 

contained in those range cells that join the hypothesis testing would remain approximately 

the same as in Case 2. Moreover, the false alarm rate will not change too much since the 

test is now performed over the range cells with a total dimension comparable to target. For 

these reasons, the trade-off between the interference power and false alarm will no longer 

play a dominant role in the performance comparison in this subsection. 

The waveform-based UWB optimal processor is applied to Case 3 for target detection 

and the related detection performance can be obtained by numerically evaluating Eq.(3- 

52)-Eq.(3-54). The rectangular FM waveform given in Section 1.3.2 is also used here for 

comparison. 
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In case of unknown scatterer separation, the integration-of-all scheme recommended by 

Section 1.3.2 is used for inter-scatterer integration in the suboptimum processing. The perfor- 

mance difference from the optimum due to the unknown scatterer separation is conventionally 

termed "collapsing loss" [9]. Obviously, the fluctuation reduction gain and the collapsing 

loss, both of which are the consequence of raising system bandwidth, plays a trade-off role 

in controlling the detection performance. 

For the MDS target model, the amplitudes of the scatterers, a,j,j = 1,2,..., J, are modeled 

as unknown deterministic constants, since little fluctuation associated with them is observed 

[3] in practice. For comparison, the total signal energy of the scatterers, denoted by a2
3 = 

E"Li K|2, is set e(lual to °?2 of Case 2- Tne interference power follows the relation a2^ = 

a2
c2/ß2. The probability of false alarm is fixed at Pf2 = Pf3 = 10~6 for both cases. 

Fig. 11 shows an example of the comparison of the detection performance of the MDS and 

point target models using the corresponding optimum processors. The number of scatterers 

J equals to 5 in the figure. With ß2 = B3/B2 = 10, Fig. 11 plots the detection performance 

of Case 2, together with that of Case 3 with both known and unknown scatterer separation. 

We can see that the probability of detection for the MDS model climbs up much faster than 

that of the point target model. To achieve a reasonably good detection performance (such 

as Pd = 0.8) the MDS UWB processor requires much lower SNR (around lOdB), leading to 

a significant improvement. 

Fig. 11 also illustrates the fact that the collapsing loss is much smaller than the fluctu- 

ation reduction gain, since the difference between the performance of the UWB processors 

with known and unknown separation is much less significant (< 2dB), which was already 

shown in Section 1.3.2. 

4.3    Comparison of Cases 3 and 4'- Extra Discrimination Gain 

In this subsection, we are mainly concerned about the effects of the range walk on the 

system detection performance. 

The carrier frequencies is set equal for both cases under the comparison. Thus for the 

same target and interference environment, both systems will have the same Doppler shift 

A/. However, the range walk rate A/> will differ greatly for the two systems. It can be 

shown that the ratio of the range walk rates for the two systems will also be A/>3/ A/>4 = ß3. 
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For convenience of comparison, we assume that the scatterers are well separated and their 

separation is known. In order to single out the effect of the range walk on the system 

detection performance, we purposely chose the same interference power for both systems, 

(i.e., a\ = (r\), although in fact it largely depends on the system bandwidth. 

Fig. 12 plots the probability of detection as a function of the signal-to-receiver-noise 

ratio. Target velocity and thus its Doppler frequency are fixed for both cases, so that the 

variation of Ap is simply due to different system bandwidth. The interference conditions are 

considered severe as we have high interference-to-recever-noise ratio (INR), large interference 

spread 07, and small target-interference Doppler separation A/ as shown in the figure. For 

the system with bandwidth B4, the relative bandwidth is set to RBW=0.5, which leads to 

A/) = 0.1 if A/ = 0.2. The bandwidth ratio of the two systems is chosen ß3 = 10, hence 

the range walk rate of the smaller bandwidth is almost equal to zero ( Ap = 0.01 « 0). It is 

seen from the figure that the detection performance with larger A/9 outperforms that with 

smaller Ap under server.interference conditions. Clearly, the range walk discrimination now 

comes into play when the Doppler shift discrimination alone is not sufficient. 

When the interference conditions become mild as given in Fig. 13, however, larger Ap 

does not necessarily mean better performance. This is because the total noise power included 

by the system with bandwidth BA is larger than that of B3, which will dominate the detection 

performance when the clutter can be well suppressed by Doppler processing already. 

For coherent multiple pulse Doppler processing, the problem of multiple blind speeds is 

well recognized, especially for UWB systems operating with a very high carrier frequency that 

would lead to a fairly large Doppler shift. Fig. 14 shows that the Doppler ambiguity problem 

can be largely solved if the range walk discrimination is used. The normalized Doppler shift 

A/, which is conventionally confined within [-1/2, 1/2] to avoid Doppler ambiguity, is now 

extended to 3. For the system with larger range walk rate contributed by B4, Fig. 14 shows 

that a fairly fiat performance can be achieved over those previous blind Doppler frequencies. 

In fact, when A/ > 1, the detection performance can be maintained nearly as a constant, 

insensitive to the change of the Doppler frequency shift. We note that Fig. 14 only shows 

the results for incoming targets. For negative Doppler frequency the conclusion should be 

similar. 
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4-4    Overall Comparison: NB versus UWB 

So far, we have separately investigated the performance gain due to different factors that 

come into play when we raise the system bandwidth by steps. Three essential aspects were 

considered: 

1. clutter reduction versus false alarm adjustment 

2. fluctuation reduction versus collapsing loss 

3. extra discrimination gain due to range walk. 

Comparisons were made between the four typical cases, each of which represents different 

bandwidth range. 

To see the joint effects of the UWB technology, the detection performance curves for 

all the cases are plotted together in Fig. 15. The following conditions and parameter 

specifications for signal, interference, and false alarm are set for the four cases: 

(T^ = 
'c3 "c2 (4-7) 

c4      ßi       ßiß2      ßißißz 

(4 - 8) 

and 

Pf4 = P/3 = P/2 = 1 " (1 - Pfl)1/ßl, (4 - 9) 

where ß\ = B2/Bi, ß2 — B3/B2, and ß3 = B4/B3. The contributions due to each individual 

factor are clearly shown in the figure and the overall performance gain is seen by the perfor- 

mance difference between Case 1 and Case 4, which is obviously an significant improvement 

for the server interference conditions as given in the figure. 
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1.5    CONVENTIONAL CANCELER-BASED UWB PROCESSING 

5.1    Conventional Canceler-based UWB Processor 

This section will present the conventional pulse-canceler-based UWB processor. It is real- 

izable in the sense that it doesn't requir a priori knowledge about the interference covariance 

and the scatterer separation, which is usually not available in practice. 

Let TbeanM'xM transform matrix representing the operation of a conventional pulse 

canceler, where M' is the dimension of the data after the cancellation. An example is given 

below for a three pulse canceler 

1-2     1      0          0 

0     1-21.'-. : 

0 
••.   0 

0      1-21 

(5-1) 

As the interference covariance is assumed unknown, we replace the optimum clutter canceler 

part of the optimal processor by the conventional pulse canceler, i.e., R-1 in Eq.(3-42)-Eq.(3- 

43) is replaced by a constant matrix P 

P = rr#rr (5-2) 

Thus the test statistic of the processor becomes 

where 

and 

Hi 

Ho 

x = f G'H(t)x'(t)dt      J x 1 

C = f G'H{t)G'(t)dt      J x 1 

with x'(£) and G'(t) being defined by 

x'(t) = Tx(t) 

(5-3) 

(5-4) 

(5-5) 

(5-6) 

55 



G'(t) = TG(i). (5 - 7) 

We should note that it works well only under the assumption that the interference has 

zero-velocity. 

The block diagram of the processor is illustrated in Fig. 16 and 17. Similar to the 

optimum UWB processor, the conventional processor can be devided into three major parts: 

the conventional interference canceler, the velocity-based multiple pulse correlator, and the 

inter-scatterer integrator. The interference canceler supresses clutter by the convertional 

MTI pulse cancellation principle. The effects of Doppler shift and range walk, both of which 

are due to the inter-pulse shift, are jointly compensated in the velocity-based correlator in 

order to obtain coherent integration gain. Clearly, the velocity-based correlator is the unique 

part of the UWB processing with large relative bandwidth, as it attempts to make the best 

use of the velocity-associated discrimination against clutter. For the scatterer integration 

part, any of schemes discussed in Section 1.3.2 can be applied to the processor. We will select 

the integration-of-all scheme for the reasons given in Section 1.3.2. 

The application of the above proposed conventional UWB processor requires a priori 

knowledge of the target velocity. In the case of unknown target velocity, a bank of the 

velocity-based correlators can be placed to cover the velocity range of interest. Fig. 18 

shows such a configuration, where the time scaling factor as in the taped delay line of each 

correlator is tuned at the corresponding velocity. 

If we use a UWB waveform with small relative bandwidth, the processor still has the 

above form. The only difference is that all the data waveforms are now replaced by its 

complex representation without the carrier frequency component. 

With the similar way used in Section 1.3.1, it is found that the above processor degenerates 

to the conventional MTI processor if no range walk is observed for slowly moving targets. 

Then the test rule is given by 

r, = |w"Ty|2 > 770 (5-8) 
Ho 

where 

y = jÄ*{t-T0)Z(t)dt, (5-9) 

and 

w = Ts. (5 - 10) 
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It is easy to see that the above processor shows a structure of a convention MTI pulse 

canceler followed by an FIR filter. 

Under the assumption that 50 is modeled by a Gaussian variable with zero mean and 

covariance cr2, the detection performance with small relative bandwidth is found to be 

Pf=exp(-Vo) (5-11) 

and 

Pd = exp(-^/(l+7)). (5-12) 

where 7 is given by 

and 770 is related the actual threshold by 

* = vnfe (5-I4) 

5.2    Performance Evaluation 

This subsection evaluates the detection performance of the canceler-based UWB proces- 

sor. We will compare the processor with the UWB optimum to see how it performs with 

unknown interference and target characteristics. 

Even though we can find a close-form expression for the detection performance of the 

canceler-based UWB processor, the result is tedious and inconvenient to perform numer- 

ical evaluation. Instead, we will conduct the performance evaluation based on computer 

simulation. 

Fig. 19 plots the detection performance curves as a function of signal-to-receiver-noise 

ratio (SNR) for the conventional and optimum UWB processors, where the UWB waveform 

and the interference covariance are the same as those in Section 1.3.2. Due to computer 

resource limit, the false alarm rate is set to 10-3. M, the total number of pulses in the 

coherent processing, is chosen large (M=28) in order to gain sufficient coherent integration 

gain. A five pulse canceler with binomial coefficients is used for the interference canceler. 

The performance of the suboptimum processor with integration-of-all scatterer integration 

scheme is also included for reference. The performance difference between the optimum 

and suboptimum processors is considered as the performance loss due to unknown number 
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and separation of the scatterers, while that between the suboptimum and the conventional 

indicates the loss caused by unknown interference covariance. It is seen from Fig. 19, with 

a interference-to-recever-noise ratio INR=50dB, the conventional UWB processor delivers a 

reasonably good performance close to the optimum. 

In order to show the effectiveness of the velocity-based correlator, a UWB processor 

without the correlator, formed by setting M = Np and directly applying the scatterer in- 

tegrator at the output of the pulse canceler, is compared with the previous one with the 

correlator. An equal total signal energy constraint is imposed over the received pulse train 

for fair comparison. Fig. 20 shows the comparison results, where the detection performance 

is depicted as a function of residual signal-to-interference-pluse-noise ratio at the output of 

the canceler.The performance difference between the two processor is clearly seen in Fig. 20, 

which reflects the coherent integration gain obtained by the velocity-based multiple pulse 

correlator. 

The interference-to-receiver-noise ratio is increased to INR=70dB in Fig. 21. It is seen 

that the canceler-based processor will experience more performance degradation under more 

severer interference conditions. 
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1.6    ADAPTIVE PROCESSING WITH UWB WAVEFORMS 

6.1    Generalized-Likelihood-Ratio UWB Processor with Large Relative Band- 
width 

This section will consider adaptive implementation of the optimum UWB processor when 

the interference statistics is unknown to the system. The data from those adjacent target- 

free range cells, named as secondary data, are used by the processor to learn the interference 

background for a better detection performance. In comparison, the data form the range cells 

under test are called primary data. 

As the scatterer arrival time and separations are also unknown, similar to the treatment 

used in Section 1.3.2, the test interval is partitioned into N test range cells, each of which is 

labeled by the time index 77. The primary data are then formed in the following way: 

X, = j x{t)zH{t - Ti)dt, MxM. (6-1) 

It is not difficult to verify that the waveform-based optimum UWB processor presented in 

the previous sections is basically constructed by the data set given above. For convenience 

of representation, we use the notation Vec(Xj) to denote an M2 x 1 column vector formed 

by the columns of X/ stacked together. We assume that the scatterers are well separated, 

i.e., no scatterer crossover occurs due to the range walk, the mean of Vec(X;) is given by 

E(Vec(X,)) = {^G)^:;S>        '=>.'.■■•." (6-2> 

with 

G = Jg(t)gH(t)dt. (6-3) 

With some simple linear algebra manipulation, the covariance matrix of Vec(X;) is found to 

be 

Cov(Vec(X,)) = G* ® R = RMM, (6 - 4) 

where <g> stands for Kronecker product. 

The secondary data set is taken from the range interval where no target is present and the 

interference bears the same statistics as that of the interval under test. Let r*., k = 1,2,..., K 
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be the time indices for the range cells covering the secondary range interval. The secondary 

data set is constructed by 

Yk = Jx(t)gH(t-Tk)dt, MxM, k = l,2,...,K. (6-5) 

Their covariance is assumed to be equal to that of the primary data 

Cov(Vec(Yfc)) = Cov(Vec(X,)) = RMM- (6 - 6) 

The range cells, both for primary and secondary data, are chosen to be well separated so 

that the primary and secondary vectors, Vec(X/) and Vec(Yjt), are independent each other 

across both / and k. 

Applying the generalized likelihood ratio test principle to the above data model, with 

RMM and a/,/ = 1,2, ...,N being the unknown parameters over which the likelihood is 

maximized, the resulting test rule is 

Vec"(G)R^MX[I + X^R^X^XtfRj^VecCG) 
Vec"(G)R^MVec(G) 

where X and Y are composed of the primary and secondary data sets, respectively 

(6-7) 

X=[Vec(X1)   Vec(X2)    •••;   Vec(Xjv)], (6-8) 

Y = [Vec(Yx)   Vec(Y2)    •••;   Vec(Y*)], (6-9) 

and RMM is the maximum likelihood estimate of KHMM'- 

RMM = YY* = £ Vec(Y*)VecH(Yfc). (6-10) 

The derivation follows the similar procedures given in [9]. We note that the above detector 

is similar to the Multiband Generalize Likelihood Ratio test (MB-GLR) algorithm in [9], 

which has some practically important features such as integrated Constant False Alarm 

Rate (CFAR) and robustness to non-Gassian interference. Of course, the desirable features 

should remain valid here. 

One of the essential problems associated with the above adaptive UWB processor is 

its high dimension, since the order of the unknown covariance matrix RMM is M X M, 

and the number of primary data vectors joining the test, N, could be very large.   The 
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computation difficulty is clear as the algorithm requires two matrix inversion operations of 

very high dimension. Furthermore, it is known that the number of secondary data vectors, 

K, is required to exceed the order of RMM at least by a factor of two in order to deliver 

an acceptable detection performance. Although the high resolution could provide a better 

approach to increase the size of the secondary data set, such a requirement is not easy to 

meet when the interference background is highly nonhomogeneous and nonstationary. 

The reason of the above problem is due to ignoring the fact that the unknown covariance 

matrix RMM is a highly structured matrix as seen in Eq.(6-4). In fact, R, M x M, is the only 

unknown part of the matrix, since G purely depends on the waveform. The ideal solution 

to the problem is to apply the GLR principle directly over the unknown parameters in R 

by taking into account the structure of RMM- Due to mathematical difficulty, however, the 

closed-form solution is not available yet and the numerical way to complete the maximum 

searching in the GLR procedure needs too much computation to be acceptable in practice. 

One alternative solution is to replace RMM in Eq.(6-7) by 

RMM = G*<8>R, (6-11) 

where 
K 

R=J2YkG1Y». (6-12) 
yfc=l 

Thus we actually use M X K secondary data vectors to estimate an M x M covariance 

matrix, which will lead to a better detection performance even though K is small as limited 

by the environment. The computation load can be partially released by the above approach 

since the inverse of RMM now becomes 

RM
1
M = G*"

1
.®R-

1
. (6-13) 

Note that the "modified GLR" algorithm described above will not have the high quality 

integrated CFAR feature possessed by the original GLR given in Eq.(6-7), as its false alarm 

could change with the interference covariance. However, it should be pointed out that the 

false alarm rate of the algorithm is invariant to the interference level change, which in turn 

indicates a "weak form" of CFAR. Furthermore, if M x K is very large, the RMM estimation 

performed by Eq.(6-12) will tend to be constant. As a result, the false alarm is expected not 

to change too much as the covariance matrix of interference varies. 
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The closed-form detection performance of the modified GLR algorithm is not easy to find. 

The performance evaluation of the algorithm, together with its robustness investigation to 

non-Gaussian interference, should be performed based on extensive computer simulation. 

Another major problem with the adaptive UWB processor is that it require exact knowl- 

edge of the interference velocity when forming the data vector x(t) by segmentation of the 

pulse train waveform x(t). If the waveform is not properly segmented according to the in- 

terference velocity, the structure of RMM as given in Eq.(6-4) will be completely destroyed, 

making it difficult to apply the modified GLR algorithm. Furthermore, even though the 

original high order GLR processor can be applied by assuming large number of secondary 

data vectors available, the detection performance will not be good since the interference com- 

ponents are not able to be effectively canceled due to poor pulse-to-pulse alignment for the 

interference. Therefore, how to accurately estimate the interference velocity is an important 

part of the adaptive processing with the UWB waveforms, and is a research topic requiring 

further investigation. 

6.2    Generalized-Likelihood-Ratio UWB processor with Small Relative Band- 
width 

Under the assumption that the system relative bandwidth is small, i.e., the carrier fre- 

quency is sufficiently high so that the ratio of the bandwidth over the carrier frequency is less 

than 10%, as given in Eq.(2-47) in Section 1.2.2.2, we may use the complex representation 

for the single scatterer waveform vector: 

g(*) 

Mt) 
_   Ä(t-a,Tp)e-

i2*f' (6-14) 

Ä(t - (M - l)asTp)e-
i2<M-^' 

where we have taken Tp = T'p so that Aa = as and /oAaTp = fs. For slowly moving target, 

the effect of the of the inter-pulse shift in the amplitude A(t), namely the range walk, is 

negligible. Then we have the approximation: 

g(t) « A(*)s. (6 - 15) 
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where 
1 
,-i2vf3 

(6-16) 

e-«27r(M-l)/3 

The bandwidth of the waveform is assumed to be larger than the critical bandwidth so that 

the individual scattering centers can still be resolved by the system. Therefore the received 

target return can be expressed by the MDS model 

§rW = Z]ai^-ri)s (6-17) 

where Tj is the delay time for jth scatterer. 

Now we construct our primary data set: 

x, =  /x(i)A(i - rfdt, Afxl, l = l,2,...,N, (6-18) 

where T\ is the time index corresponding to the /th of test cells covering the whole test 

interval. With the signal complex envelop A(t) being normalized to have unit energy, it is 

not difficult to show that the covariance matrix of x; is given by: 

R = E(x,xf \H0) = RC/2B + ^1, (6-19) 

where Rc is given in Eq.(2-57). 

For the secondary data set, the same operation is performed on those adjacent range cell 

without target returns: 

y, = J x(t)Ä(t - rk)dt, Mxl, fc = 1,2, ...,#. (6 - 20) 

which should have the same covariance matrix as X/. 

The above data model is similar to that in [9], where a multiband GLR (MB-GLR) 

algorithm is presented for target detection. Applying the same algorithm to our multiple 

dominant scatterer (MDS) data, we have the MDS-GLR algorithm given below: 

77 = 

where 

s^R-is 

X = [xi   x2    • • •;   xN], 

(6-21) 

(6 - 22) 
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Y = [y1   y2    •••;  y*], (6-23) 

and 

R = YY*,        MxM. (6 - 24) 

Obviously, the high dimension problem associated with the high order GLR given in Section 

1.6.1 is avoided here since the order of the estimated covariance matrix R is only M. 

Under the assumption that both the primary and secondary data vectors are complex 

Gaussian distributed, the probability of false alarm of the MDS-GLR processor is found to 

(1-„„)*-"+■ ^[/f + jV-M-jj! „_, 
P>-     (K-M)>    £        (JV-i)!        1"    ■ (6    M) 

The above expression indicates the fact that the algorithm has the integrated CFAR feature, 

as the false alarm is independent of the covariance matrix interference Rc. 

Assuming the complex scatterer amplitudes dj are all unknown constants due to much 

reduced target fluctuation, the probability of detection is shown to be: 

Pd = fQ Pd\Mv)dv (6 - 26) 

where 

and 

with 

f (u\ = [K + N - 1]!      _   )M-2 K+N-M (6 _ 21) 
U[U)      (M-2)\[K + N-M]\[l     V)       V ' {b     li) 

o      -1       „N-ln       „ )K-M+l K V+ V  K + N ~ M \ 

xfjLl^-^gW^)!^ (6_28) 

j 

ß = J2\äj\
2sIiR-1s. (6-29) 

The derivation procedures follow those given in [9]. 

The detection performance of the MDS-GLR is evaluated in Fig. 22 with a Gaussian 

shaped interference spectrum. The number of the secondary data vectors is chosen large 

(K = 60) since the high range resolution can provide more independent and identically 

distributed data for given size of homogeneous range.   The optimum performance, where 
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we assume known interference covariance and scatterer separation, is included for reference. 

We note that among the N range cells under test, only a small portion contains the target 

scatterer returns. Thus the collapsing loss will result if the MDS-GLR processes all the test 

cells without knowing the range distribution of target scatterers. To single out collapsing 

loss, we also include the suboptimum performance using the integration-of-all inter-scatterer 

integration scheme. It is clear that the gap between the optimum and suboptimum indicates 

the collapsing loss and the gap between the suboptimum and the MDS-GLR stands for the 

estimation loss due to unknown interference covariance. With J = 5 scatterers out of N = 20 

test range cells, one can see from Fig. 22 both collapsing and estimation losses are less than 

3dB. 
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1.7    CONCLUSIONS AND DISCUSSIONS OF PART I 

UWB systems, using either an impulse or frequency/phase modulated waveform with 

large or small relative bandwidth, potentially have a significant moving target detection 

(MTD) performance gain over the conventional narrowband/low-range-resolution systems, 

in addition to the well known gain due to the clutter power reduction in the range cell. This 

additional gain, in the range of 15~20dB, indicates that the subclutter visibility performance 

potential of UWB surveillance systems is severely underestimated previously. This conclusion 

is obtained via careful comparisons of optimum UWB and narrowband/low-range-resolution 

systems. 

To approach the performance potential for reliable detection of weak moving targets in 

strong clutter, the UWB system's MTD processor should maximally exploit the velocity 

based discrimination against the clutter, which also demands careful thoughts in the de- 

velopment of its multipulse target component integration part, especially when the clutter 

suppression residue is still much larger than the target component. 

The simple nonadaptive UWB MTD processing algorithm developed in Section 1.5 is 

capable to approach the optimum performance even at very low SINR. This algorithm can 

be used for ground-based systems whose clutter spectrum is usually quite simple. Whether 

the UWB waveform is impulse or frequency/phase modulated, its implementation is well 

within the reach of currently available processor hardware. 

For the airborne UWB surveillance application where the clutter is severely nonhomoge- 

neous/nonstationary with very complicated spectrum, the GLR-based adaptive MTD pro- 

cessing algorithm of Section 1.6 becomes necessary. As planned for Phase I, only a simplified 

GLR for over-resolved moving target detection is derived and studied, under the assump- 

tion that the UWB system has a small relative bandwidth and that the target velocity only 

produces a doppler frequency shift. This GLR-based UWB MTD, still sufficiently simple to 

implement, offers near optimum performance with fast convergence and an embedded robust 

CFAR. A more complete GLR-based UWB MTD without the restrictive assumptions above 

will be part of Phase II work. 
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II. 1    INTRODUCTION OF PART II 

1.1    Review of Previous Work and Problem Statement 

Maximizing the target signal-to-clutter ratio for optimum detectability in a radar system 

can be achieved through processing of polarization dependent scatterer. The main objec- 

tive of this research is to identify optimal/adaptive polarimetric techniques for processing 

Multiband (MB) and Ultra-Wideband (UWB) returns, develop these techniques into algo- 

rithms,and quantify their detection performance. 

The theoretical framework for optimum dual-polarization target detection is presented by 

Guili [10]. Polarization diversity techniques may require polarization adaptation on trans- 

mission and/or reception. On reception, this can be, under the Gaussian assumption, accom- 

plished using a coherent linear combination of the signals received from the two orthogonally 

polarized channels. This linear receiver is utilized in processing measured data to evaluate 

detection performance even though the interference may not follow the Gaussian assump- 

tion. On transmission, a virtual polarization adaptation method can be applied [11,12]. This 

requires consecutive return echoes received from the target with orthogonal polarizations on 

successive transmissions, be coherently and linearly combined on reception. The virtual po- 

larization adaptation method is well described in [13], and the reception only polarization 

adaptation method in [14]. A simple and effective way to implement polarization processing 

is through a canceler based approach on reception only. This is similar to the basic approach 

for adaptive sidelobe cancellation of jamming signals received through two (main and aux- 

iliary) antennas [3]. For implementing a polarization processor, the polarization canceler 

based technique is widely prefered because receive-only polarization diversity can provide a 

considerable amount of performance improvement [10], and will not require multiple pulse 

processing [3], [11]. 

In addition to the polarization diversity on reception, frequency variational signaling is 

applied in the Adaptive Polarization Canceler (APC) based detector to improve detection 

performances for slowly or tangentially moving weak targets, which typically go undetected 

when only doppler processing is used. Previous work in this area has largely focused on 

optimum Single Band (SB) polarimetric radar processing, with performance improvements 

presented as a processing gain. In this report, we investigate both the optimum and adaptive 
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performance of frequency variational polarimetric radar processing. 

Two frequency variational signaling schemes are presented, Multiband (MB) and Ultra- 

Wideband (UWB). System requirements, and signaling methods for obtaining the MB and 

UWB polarimetric data are discussed. Implementation considerations and performance anal- 

ysis of these technique are presented. The detection performance improvement due to fre- 

quency variational signaling is obtained from a closed-form expression for detection probabil- 

ity (Pd)- The polarization canceler based detector with SB signaling exhibits problems [15], 

such as target signal cancellation along with the clutter, and clutter power cancellation lim- 

itations due to the low degree of polarizaiton problem determined by the ratio of completely 

polarized portion of clutter power to the total clutter power. These two problems severely 

degrade detection performance, and limit applications of this polarization canceler in prac- 

tice. To solve these problems, the MB signaling scheme is applied in conjunction with a 

polarization canceler based detector. Motivating this work is the variability of clutter polar- 

ization, relative to the target, as a function of radar frequency. Since the target polarization 

varies with the carrier frequency, independent of the clutter's, a frequency diversity (i.e., 

multiband) system should have the potential to solve the signal cancellation problem. Also, 

the degree of polarization varies with carrier frequency, a frequency diversity system may 

have the potential to obtain a high degree of polarization at least from one of subband chan- 

nels. Based on these ideas, the first part of this report introduces the Adaptive Multiband 

Polarization Canceler (AMBPC) based system, and it is to establish its performance gain 

over the corresponding SB system. The detection performance improvement due to MB sig- 

naling has been quantified with respect to the signal cancellation and degree-of-polarization 

problems, and is compared with the SB signaling scheme on the basis of equal system con- 

straints, (without giving any favor to MB system). Furthermore, the AMBPC based detector 

performance evaluation spans from analytic development to the experimental performance 

demonstration using measured data to verify the feasibility of this technique. The use of MB 

waveforms applied in various radar systems to improve target detectability is well-established 

[17,18,19]. Alternatively, the use of UWB thchnology in polarimetric radar detection remains 

essentially unknown, and is not well-established. The performance improvement obtained 

using frequency diverse adaptive polarization processing provides sufficient justification to 

investigate Ultra-Wideband (UWB) polarization processing capabilities. 
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If the clutter statistics were known a priori, the covariance matrix could be formulated, 

and the optimal solution for the canceler weights obtained. In practice the clutter statistics 

are not known a priori, and furthermore, the interference environment frequently changes due 

to the presence of moving near-field scatterers, antenna motion, interference, and jamming. 

Consequently the adaptive processor must continually update the weight vector to meet the 

new requirements posed by varying conditions. The need to update the weight vector in 

the absence of detailed a priori information leads to the expedient of obtaining estimates 

of the clutter covariance matrix from a finite range observation interval, and employing 

these estimates to obtain the desired weight vector. This method of implementing the 

adaptive processor, referred as the Sample Matrix Inversion (SMI) technique, is considered 

here as a candidate adaptive algorithm. Theoretically, it would be possible to improve 

performance by increasing the observation interval (more range cell data for instance), but 

as a practical matter, the observation interval is severely limited due to the nonhomogeneous 

nature of the enviornment. MB signaling improves performance by increasing the quantity of 

independent and identically distributed (i.i.d.) date vectors available for clutter estimation, 

whereas UWB signaling improves performance by increasing the information available for 

clutter characterization. In the UWB radar polarization processor, due to the reduced 

size of the resolution cell, down-range images of target and clutter returns are provided 

. In this case, each resolution cell contains a reduced number of closely-spaced scatterers. 

Therefore, polarization becomes a less ambiguous descriptor of the target and clutter returns. 

Frequency variational signaling will enhance the performance of the adaptive system by 

providing additional information for formulating estimates of the covariance matrix. 

The second part of report developes UWB signaling in a polarization processor to ex- 

amime the state-of-the-art, potential performance benefits, and limitation of UWB technol- 

ogy, with particular emphasis on radar detection application. Under the toughest system 

constraint, the detection performance of the optimum UWB polarization processor will be 

compared with optimum Narrow Band (NB), as well as the MB system. The overall gain 

achievable by UWB signaling over the NB signaling is divided into separate gains, which will 

enable the readers to understand the reason for UWB signaling. 

The radar system considered in Part II of this report transmits a single polarized (ver- 

tically) pulse, and receives target and clutter backscatter with dual-polarized (horizontally 
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and vertically) receivers, (see Fig. 1) 
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1.2    Organization of Part II 

Part II of this report consists of two main parts : The optimum/adaptive MB polar- 

ization canceler based detector, and the optimum UWB polarization processor. Analytic 

and experimental performance analysis of the AMBPC based detector are presented. The 

second half of this Part II report presents the optimum UWB polarization processor, and its 

performance analysis is presented, and compared to the optimum NB and MB polarization 

processor. 

In Chapter 2, the problems associated with SB signaling in a polarization canceler based 

detector are discussed. Two canceler based detectors are presented : The Optimum MB 

Polarimetric Detector (OMBPD) and the optimum/adaptive MB Polarization Canceler (op- 

timum/adaptive MBPC) based detector. The OMBPD is mainly studied here so as specif- 

ically to highlight the problems with SB signaling, and to clearly show the improvement 

associated with MB signaling. The detection probability of the OMBPD is expressed in 

terms of signal cancellation and degree-of-polarization parameters. The performance of the 

AMBPC based detector is obtained from the detection probability, and compared to its op- 

timum, which provides a reference for comparison. Also, its performance evaluation includes 

an experimental performance demonstration using measured data, to verify the feasibility of 

this technique. 

Chapter 3 introduces UWB signaling in a polarization processor to examine the state-of- 

the-art, the potential performance benefits and limitations of UWB polarimetric technology, 

with particular emphasis on radar detection application. The mathematical representation 

of waveform-based UWB data returns are developed, and is extended to the cases of small 

relative bandwidths of UWB and NB systems. Log-likelihood ratio tests are formulated, and 

their performance analysis are followed accordingly. 

In Chapter 4, The optimum UWB and NB polarization processors are compared under 

the most severe system constraints. The purpose of this chapter is to quantified the UWB 

signaling gain over NB and MB signaling in the polarimetric radar system. 

In Chapter 5, contribution and discussion are included. 
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II.2    ADAPTIVE MULTIBAND POLARIZATION CANCELER BASED DETEC- 

TOR 

The non-coherent Adaptive Polarization Canceler (APC) receiver provides a simple an 

efficient implementation of an optimum polarization processor, for a partially polarized 

clutter environment. Based on this receiver, the detection performance improvement ob- 

tained through frequency diversity will be evaluated by deriving a closed-form expression 

for probability detection (Pd). Furthermore, this Adaptive Multiband Polarization Can- 

celer (AMBPC) based detector performance evaluation spans from analytic development to 

experimental performance demonstration using measured data. 

2.1    Detection Performance Evaluation 

Analytic evaluation of the AMBPC based detector is obtained by deriving the detec- 

tion probability, and compared with its optimum realization which will provide a reference 

against AMBPC based detector. Besides the optimum/adaptive MBPC based detector, an 

Optimum MB Polarimetric Detector (OMBPD) is presented specifically to evaluate prob- 

lems associated with SB signalling in a polarization canceler based detector, and to clearly 

show the improvement obtained through MB signalling. This section consists of an introduc- 

tion to the SBPC based detector problems, the MB data model, the OMBPD, the AMBPC 

based detector, and a derivation of detection and false alarm probabilities. Performance 

comparison and conclusion are presented. 

2.1.1    Introduction 

The fundamental phenomenon of polarization can be explained by conceiving of an elec- 

tromagnetic wave as a transverse-wave motion. The polarization state is the orientation of 

the electric field vector at a given point in space during one period of oscillation, and, in 

general case, the terminus of this vector describes an ellipse such that, looking along the 

direction of propagation; the direction of rotation is either right handed or left handed. The 

polarization state (generally ellipse) is completely determined by the geometrical parame- 

ters; an elliptically polarized state with ellipticity axial ratio (r) and orientation angle (e) can 

be uniquely represented by a point having parameters 6a and 9e as asumuth and elevation, 
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respectively, on a sphere - this sphere is called the Poincare sphere (see Fig.2 of [10]). Also, 

9a and 9e can be expressed in terms of r and e, i.e., 0a=2e,and 9e = ±2 • tan_1(|r|). 

The polarization of the received wave can vary. This is mainly connected with the 

nonstationary behavior of interaction with both the propagation medium and the target. 

The received polarization state may result in being time-varying elliptically polarized, even 

though the orignal trasmitted wave was the time invariant linearly polarized. In this case, 

the received wave can generally still be expressed by 9a and 9e with 9a = 9a(t) and 9e = 9e(t). 

During the observation time, this time variation of the received wave can be attributed to 

the random phenomena. Under this condition, the received wave is said to be partially 

polarized. A partially polarized wave can generally be decomposed into two components: 

one is completely polarized (its polarization state does not change with time) and the other 

is unpolarized (its polarization state changes randomly). 

Signal Cancellation and Sensitivity Problems in SBPC Based Detector: 

Our basic assumption is that the complex received clutter backscatter echo is partially 

polarized [10,11] so that it can be decomposed into the completely polarized component and 

unpolarized component. Furthermore, we assume that the unpolarized component is white 

noise process which can be incorporated into the receiver noise model. In fact, the power ra- 

tio of the completely polarized portion to the total clutter, called the degree-of-polarization, 

and is an important factor in evaluating detection performance of the Polarization Can- 

celer (PC), because the level of cancellation which may ultimately be achieved is limited by 

the unpolarized component of the clutter backscatter. The detection performance degrada- 

tion is expected with backscatter having low degree of polarization, here we named that as 

sensitivity problem. 

If no desired target is present, PC will do the job of eliminating a completely polarized 

component, and possibly some of unpolarized component of the clutter. In the presence of 

the desired target (target polarization vector unknown), it is expected that PC will cancel 

the desired signal, (called the signal cancellation problem), when the polarization vectors 

(states) of target and completely polarized portion of clutter are not orthogonal each other. 

In fact, this polarization vector difference (can be expressed as the azimuth and elevation 

angles), between target and the completely polarized portion of clutter, is a random quantity. 
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Consequently, it yields detection loss.   This signal cancellation problem in SBPC based 

detector has, also, been reported in [12]. 

The two polarization states are said to be orthogonal each other characterized by having 

identical |r| and |e|, and 90° difference in 6a. Once the magnitudes of geometrical parameters 

of target and clutter polarization are set to equal, the target portion of PC output response 

can be expressed in terms of the angle of ( which is interpreted as polarization angle difference 

away from the maximum response [16], i.e., £=90° - A6a, -90° < £ < 90°. The maximum 

response is obtained when target and completely polarized portion of clutter vector are 

orthogonal (£=0, or A0a = 90°). Fig. 2 presents the normalized target amplitude response 

with respect to A6a : When the target polarization state is linear (9e = 0°) and the clutter 

polarization state is (a) linear (9e = 0°), (b) and (c) elliptical (0e = 30°, 60°), and (d) 

circular (0e = 90°). It indicates that the target of polarization canceler output is completely 

canceled when both polarization states are linear and zero angle difference, and 3 dB. target 

power cancellation is expected when A6e = 90° for all A6a. The Eq.(3) in [10] is utilized 

to make this plot. The curves in Fig.2 are the slices of response once the target and clutter 

polarization states are determined. Fig.3 is included to present the all the elliptical cases. 

As such the signal cancellation problem in PC is apparent and inevitable. 

A Multiband Polarization Canceler (MBPC) is developed to combat the signal cancel- 

lation problem. The MBPC based detector can be implemented by establishing a bank of 

polarization cancelers across frequency, (see Fig. 4) In this way, the target return can be pre- 

served in at least some of the diversity channels with a high probability, since measurements 

with the different frequencies yield the different polarization states for the same clutter. It 

is expected that for some diversity frequencies, the receiver polarization state used to null 

the clutter will allow passage of the target signal. This condition is not assured by a sin- 

gle frequency polarization canceler based detector. Based on this proposed MBPC based 

system of Fig. 4, the first part of dissertation is to establish its performance gain over the 

corresponding SB system. The MB detection performance evaluation and comparison will 

be carried out, using a closed-form expression of the detection probability. The MB data 

model is presented in the next section. 
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ASBPC : Amplitude Response 

Figure 3: Target Amplitude Response of Polarization Canceler Output with respect to target 
and clutter polarization difference in angles 
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2.1.2    Multiband Data Model 

Consider a polarization receiver with a single polarization transmitter employing an intra- 

pulse frequency diverse waveform as illustrated in Fig. 11, where each subpulse of width 

T'=TIJ has a different carrier frequency with an arbitrary narrow band modulation of its 

own. An example of the spectrum of such a simple frequency diversity signalling is given 

in Fig. 12, where r=8 usec. and fj+1-fj=8f=2 MHz., j=l,2,3 with no additional subpulse 

modulation. Without the loss of generality, we assume that the single transmit polarization 

is vertical. 

The following received multiband data model for signal detection has arrived after proper 

preprocessing (via J subbands for both v and h channels), such as amplification, filter- 

ing, passband to baseband conversion, analog to digital (A/D) conversion and time domain 

matched filtering (matched to each subpulse). For each of J subbands the receiver output 

will be expressed by a set of 2x1 complex vectors whose first element is set for the h channel 

output. 

The dual-channel polarization receiver from a single polarization transmitter and fre- 

quency diverse measurement can be expressed in matrix form as : 

x = •Evh.1     Zvh2      ' ' '     -Evhj     ' ' '     ^vhJ 

2>tral      ^vv2      ' ' '     -^vvj     ' ' '     -EyvJ 
(2-1) 

where the first two subscripts refer to the transmit and receive polarization, respectively, 

and j — 1,..., J is the diversity frequency index. 

The whole data set is divided into two sets which will be called the primary data set and 

secondary data set, respectively, with the former denoting the data of a currently chosen 

test range cell and the latter of the surrounding cells. 

The primary data set consists of J complex vectors, Xj, 2 x 1, j = 1,2, ...J. Under H0, 

i.e., the clutter-and-noise-alone hypothesis, we have 

Xj    =   xcj ~r x^j 

=    X-cpj + Xnj \^'^) 

where xcj, and xwj represent the clutter and receiver noise components and are assumed to 

be independent, also, Xj, j = 1,2,..., J are assumed to be independent and have identical 
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complex-Gaussian distributions with zero mean and covariance matrix Ry, (size 2x2), and 

xCJ is the partially polarized clutter so that it can be decomposed into completely polarized 

portion, xcpj, and unpolarized portion, xup:/-, which is incorporated into the receiver noise, 

ended up being xnj. 

Under Hi, the signal-plus-clutter-and noise hypothesis, we have 

Xj — Xsj ~f~ XCpj ~\~ Xnj ^Z       oj 

where xSJ- is the target part of the received data and it can be represented by the completely 

polarized state, psj, and complex amplitude aj, i.e., xsj = ajpsj. In this analysis, CXJ is 

modeled by a complex Gaussian random variable with zero mean and variance o^-. p^ is an 

unit normalized vector, and is unknown to the processor in practice. We also assume that 

the target vector xsj is independent of xcpj and xnj. 

Under both H0 and Hi, the secondary data Xjjt, 2 x 1, j = 1,2, • • •, J and k — 1, 2, ■ • •, K, 

are assumed to be i.i.d. complex-Gaussian vectors with zero mean and a covariance matrix 

R. The range index K refers to sample periods, as from the output of an analog to digital 

converter. Often range samples are extracted from a range window whereby the index span 

1, • • •, K translates to an actual range1 interval of (ri,r2). It is assumed that the secondary 

data set is independent of the primary data set. 

Based on JK number of the secondary data, the clutter and receiver noise covariance 

matrix R can be estimated by 

1 J     K 

JJX j=ik=i 
(2-4) 

where "//" denotes the complex conjugate and transpose. The quantity given by Eq.(2-4) can 

usefully be employed for the selective cancellation of clutter in the central radar resolution 

cell contained in the set window, to enhence the signal-to-clutter power ratio under the 

following assumptions : 

(1). The observed clutter has stationary polarization behaviour within the set window. 

(2). The signal samples are mainly contributed by the clutter to be cancelled, (supper- 

clutter visibility condition) 

1In practice, the range extent, K, over which the i.i.d. assumpton applies is severely limited. It is precisely 
this case for which frequency diversity is expected to improve the performance of adaptive processing, as 
found by Wang and Cai [13]. 
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(3). The observed clutter presents a sufficiently high degree-of-polarization when mea- 

sured within the set window. 

The true clutter plus receive noise covariance matrix R will be obtained by taking the 

expectations of Eq.(2-4). The polarimetric model parameters are as follows: 

R   =   Rc + R„ 

Q*Ji        1 + 0 
0 

(2-5) 

where Rc, and Rn are the completely polarized portion of clutter covariance, and unpolarized 

plus receive noise covariance matrix, respectively. This is similar to the single transmit and 

dual receiver version of a meadow clutter example given in [22]. The power ratio between 

co-polarized and cross-polarized channels is specified by e, with 0< e <. The complex 

correlation coefficient g between the voltages x^ and xv is defined as 

E(xhxl) _ 
ß     [E{xhxl) ■ E(xvxl)]W [        ] 

with 0< \Q\ <1. Together with degree of polarization parameter, it provides a useful descrip- 

tion of the time-varying polarized waves. The matrix R is a Hermitian matrix (R = R); 

hence, it can be represented by the Stokes parameters [7], <7cb<7i><72 and gz, which are four 

real numbers defined as follows, 

(2-7) 

9o ' \<d + o*v ] \    ^c(l+e) 

9\ 2Im[<Thv] 2Im[ßyia2
c) 

92 *l ~ °l ^c(e-l) 
93 . 2Re[ahv] [ 2Re[g^a2

c] 

and the total average power, given by g0, meets the following condition: 

92
0 >9l + 9l + 93- (2-8) 

In Eq.(2-8), the equality holds when the wave is completely polarized, while gi = g2 = #3 = 0 

when the wave is completely unpolarized. In terms of the Stokes vector, a partially polarized 

wave can be uniquely decomposed as 

g 

9cP 90 - gcp 

9\ 
92 

+ 0 
0 

9z \ 0 

(2-9) 
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where gcp = (g\ + g\ + gj)1^2 and (g0 — 9cV) are the powers contained in the completely 

polarized and unpolarized wave ocmponents, respectively. Then the degree of polarization 

of the wave corresponding to the second-order statistic model of Eq.(2-5) is obtained as 

7   = 
9cp 

9o 

(92 + 92 + 9lf12 

9o 

{{°l + «l? + [2fiek)P + [2/m(^)]2}1/2 

°l + °l 
{{al{e - l)]2 + {2alf • [{Re{Q)f + {Im{Q)f}}^ 

ai(e + l) + 2-al 

(2-10) 
(72(6 + 1) + 2- 0-2 

In particular, when e=l, i.e., \xh\ = \xv\, the following relationship of degree of polarization 

and the complex correlation coefficient can be obtained from the above equation 

,2 

7=lSK^) (2-11) 

It shows that the magnitude of correlation coefficient is always less than and equal to the 

degree of polarization, |^| < 7, and is always true for every value of e. Note that an antici- 

pation of detection performance in a polarimetric processor is relied on knowing the degree 

of polarization parameter value, but it is almost unpractical to find, while the estimation of 

complex correlation coefficient is possible with reasonable accuracy, and it will serve as the 

lower bound for a deree of polarization parameter value. 

Based on the MB data model described in this section, two canceler-based detectors will 

be presented in the next consecutive sections. 
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2.1.3    Optimum Multiband Polarimetric Detector 

In OMPD, R, and 7,- are assumed to be known as well as o\-, a2
vi, and ahvj. Where 

a\-, and a\- are the input clutter-plus-noise powers of h and v channels, and ahvj is the 

cross-covariance between the channels, respectively, under H0 hypothesis. The power for 

completely polarized portion of the clutter can be calculated from the known quantities, i.e., 

The following proposed OMBPC based detector is studied, specifically in order to identify 

the problems with SB signaling in the polarization canceler based detector, and to clearly 

show the improvement of MB signaling. A detailed explanation of SB version for this algo- 

rithm is in [10,13]. 

1. Compute the receiving optimum normalized Stokes polarization vector f(prj) (which 

minimizes the canceler output power) : 

f(Pri) 

r/oi 
h 
h 

L/3J 

-2 Im{ahvj)/(72
pj 

-(of 
-2 Re(crhvj)/(T2

pj j 
hi 

(2-12) 

2. Calculate the optimum receiver polarization weight vector prj = [prhj,Prvj] 

'rj 

.  v
/v1/2j(/o -/2j _ 

(2-13) 

3. Construct the test statistic 

j »1 

<    Vo 

where 

(2 - 14) 

(2-15) Zj — Xj prj ;   j — 1,2, ...,J, 

where "H" denotes the complex conjugate and transpose operator, and Zj is the residual 

output signal after polarization cancellation of the disturbance. Hi is accepted if 77 is larger 

than a chosen threshold rj0. 
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2.1.4    Adaptive Multiband Polarization Canceler Based Detector 

The Sample Matrix Inversion (SMI) class of adaptive algorithm for weight vector com- 

putation has been studied. We start by investigating the polarization canceler with an 

adjustable gain on the main channel (horizontal, cross-polarized channel). The adaptive 

weight vector in this canceler will be the solution to 

pr = //R   u, (2-16) 

where pr, 2 x 1, is the estimate of the weight vector (receiver polarization state), \L is a gain 

constant, u is the desired signal vector, and 

1 J     K 

3 — \ k=l <?vh       <?l 
(2-17) 

is the estimate of MB covariance matrix based on JK number of the secondary data. Because 

the cross-polarized channel (horizontal) employees higher gain (desired signal present) than 

the copolarized channel (vertical), a target return in the horizontal channel produces larger 

output signals than an equivalent input to the vertical channel. Hence, for this desired signal 

vector u we have approximately 

u = 

Then Eq.(2-16) may be rewritten as 

/. A. 2 

1 
0 

Prh 

Prv 0 

(2-18) 

(2-19) 

This equation is equivalent to two scalar equations 

&hPrh + VhvVrv = /*, (2 - 20) 

and 

O'vPrv = -PrhVvh- (2-21) 

We choose a value of n in Eq.(2-20) that results in prh being unity. Then Eq.(2-21) reduced 

to 

Prv  — 
<Thv 

(2 - 22) 
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The output of the canceler obtained using Eq.(2-15) is 

ZJ = xhj + pTVx*vj,     j = 1,2, • • •, J, (2-23) 

where "*" denotes the complex conjugate. Eq.(2-22) is a well known form of the APC weight, 

and its output is given by Eq.(2-23). 

The final test statistic is the sum of magnitude squared for all J subband outputs 

i7 = El*ila   "i  1o (2-24) 

This adaptive processor will be compared with its optimum processor of known clutter 

statistic case, i.e., R = R. 
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2.1.5     Derivation of Detection and False Alarm Probabilities 

To simplify the derivation of the detector performance, without loss of generality, assume 

that the separations among the subbands are sufficiently large so that the returns of the J 

subpulses are statistically independent 2. The assumption on the relative bandwidth of the 

system leads to 

<£ = <£ = ■■■ = °*j (2 - 25) 

For the same purpose we also assume that the target polarization vectors do not change over 

the J subbands, i.e., 

P2I = P22 = -- = PJJ (2-26) 

We thus drop the subscript j on both Eq.(2-25) and Eq.(2-26), i.e., using a] and ps, respec- 

tively. With a careful selection of the subband frequency separation, these two assumptions 

can be approximately valid [19]. However, it should be note that the operation of the 

AMBPC based system does not rely on these two assumption. 

The subband Signal-to-Clutter-plus-Noise-Ratio (SCNRj) is defined as 

SCNRj = SNRj/(l + CNRj). (2 - 27) 

where SNRj and CNRj refer to the subband Signal-to-Noise Ratio and Clutter-to-Noise 

Ratio, respectively. 

Derivations of Pd and Pfa for OMBPD 

The output power, for each subband, under H0 and Hi, respectively, can be found [13] 

in terms of the degree-of-polarization 7, input total power under H0 ^lm0, the input target 

power cr2s, and the angle deviation (degree away) from the maximum response £, 

a 

2 
2        _  ax\H* 
Z\HQ n (l-7), (2-28) 

and 

,2 Jl     „nn2(c\    1    ~2 <\Hl = °l ■ cos\i) + al]Ho . (2 - 29) 

Experiments observing small targets with ground clutter at RL, 1989, indicate that 1 MHz. frequency 
steps are sufficient to meet these requirement with a maximum of twelve diversity frequencies. 
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Here, the degree of polarization (7) is defined under H0 hypothesis, i.e., 7 = v2
cplv

2
x\Ho- We 

assumed that the target and the clutter polarization states are both linear, so cos2(£) term 

explicitly shown in Eq.(2-29), which correponds the response curve (a) in Fig. 2. 

The subband signal-to-noise ratio SNRj and subband clutter-to-noise ratio CNRj are 

defined, respectively, as 

SNRj = 4 , (2 - 3°) 

and 

CNR, = 4 ■ (2 - 31) 
< 

The output of the linear polarization filter, Zj, will have a complex Gaussian probability 

density if the dual channel inputs, X/^ and x„j are complex Gaussians. Under the condition, 

the statistically optimum method for combining the outputs of a multiple channel frequency 

diverse waveform is the Square-Law Detector. When the Square-Law Detector is applied 

to Gaussian measurement data, the output will follow the Chi-square distribution with 2J 

degrees of freedom [1]. Thus, the detection probability, Pd = P(r] > r]0 \ H{), and the false 

alarm probability, Pfa = P{j] > r}0 \ H0) can be written as [l]. 

Pd = exp(-md) ■ J2(mdy->/(J - j)! , (2 - 32) 
j=i 

and 

Pfa = exp(-mfa) ■ J2(mf«)J~J/(J - i)! • (2 - 33) 

where mja = rj0/al,H which can be found using Neyman-Pearson criterion with a predeter- 

mined Pfa, and md = r}0/a
2,Hi can be factored out from Eq.(2-29), as a function of mja, 

i.e., 

md ~ [1 + (2 • cos>(0 ■ SCNRi)l{\ - 7)] " { 3 

Eq .(2-32), (2-33), and (2-34) complete the derivations of detection and false alarm proba- 

bilities for the OMBPD. 

This optimum processor is specifically presented to clearly show the performance im- 

provement obtained using MB signalling, in terms of detection probability expressed by the 

parameters of degree of polarization (7) and degree away from the maximum response (£). 
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DERIVATIONS OF Pd AND Pfa FOR AMBPC BASED DETECTOR 

The averaged output power for each subband channel under i/l5 and H0 hypothesis, 

respectively, are 

*JWl   =   E[zrf]      ,i = l,2,.-.,jr 

=   PrWlPsPf + R]P, (2-35) 

and 

a2
z]Ho = pf Rpr . (2 - 36) 

As the test statistic r) is the sum of \ZJ\
2
, j = 1,2,...«/, its probability density functions 

are 
1 

fv(r, | ff!,pP) = ^2J   . v ■ VJ-' ■ exp(-V/a
2

zlHi) (2 - 37) 

and 

fv(v I #o,Pr) = -,2J   , „ ■ V"'1 ■ exp(-rj/a2
zlHo) . (2 - 38) 

az\H0\
J        l)- 

The conditional probabilities of detection and false alarm are thus found by integrating 

Eq.(2-37) and Eq.(2-38), respectively, above the threshold TJ0, 

Pd\Pr   =   P(ri>Ti0\H1,pr) 
/•CO 

=    /    fv(v \ Hupr)drj 
Jr\o 

J 

=   exp(-md) ■ Y,(™d)J-J/(J - j)\ , (2-39) 
3 = 1 

and 

PMPr    =    Pfa>i/o|ffo,Pr) 
TOO 

=   /    Mv I Ho,i>r)dv 
'Vo 

J 

=   exp(-mfa) ■ S(m/o)J"V(^ - j)\ , (2-40) 
3=1 

where rhd = Vo/°2
z\Hl and mfa = Vo/^\Ho- 

Eq.(2-16) can be written as 

i>r =      ^-"     , (2-41) 
(u^R   P.) 
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with fi = l/(uHR aps)- 

Substituting it into Eq.(2-35) yields 

*i*    =    [u//R"1(R + as
2pspf)R-1u]/(u^R"1pJ2 

uHR"1RR~1uuHR_1p,           1              2 

(u^R_1
Ps)

2             u^R-^s     °s 
(2-42) 

Define 
(u"R-1

Ps)
2 

(2-43) 
utfR^RR^uu^R-1?, 

and 

ß = u^R^p, (2 - 44) 

Eq.(2-42), then, becomes 
■1 

-2                  *      ,       2 (2 - 45) 

Under the target absent hypothese i?0) Eq. (2-45) truns out 

(2 - 46) 

Note that /> of Eq.(2-43) is similar to the "normalized signal-to-noise ratio" in [20], which 

has a Beta distribution for dual-channel data, i.e., M = 2 

fp{p) = KJp<KJ-1\      0<p<l. (2-47) 

The detection and false alarm probabilities for adaptive processor can be obtained by aver- 

aging above conditional probabilities over the random variable p, respectively, 

Pd= [\xp(-md).J2(md)
J->/(J-j)\  -fp(p)  dp, 

J0                                    j=l 

(2 - 48) 

and 
-i                         i 

A               rl                                J 

Pfa= /   exp(-m/a)-^(m/o)J-V(J-i)! • fp(p) dp, 
0                        j=i 

(2 - 49) 

where 

rhd = m/a/(l + pßo-]) , (2 - 50) 

and 

rhfa = prj0ß . (2-51) 
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Performance evaluation follows from the above expressions by using Eq.(2-49) to deter- 

mine rhfa to meet a specified false alarm probability given J and K. K=2 is the minimum 

number of auxiliary range indices necessary for single band clutter estimation. The num- 

ber of frequency diversity channels, J, will be a variable parameter. For a specified clutter 

covariance and target signal, detection probability is calculated from Eq.(2-47) and (2-48). 

The optimum MBPC based detector as an upper bound to adaptive MBPC based detector 

is defined for R = R, when the clutter statistic is known a priori. Note that although the 

MBPD and MBPCBD are developed for the MB system, they are also applicable for the SB 

system and all of them become their corresponding SB algorithm just by letting J=l. 
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2.1.6    Performance Comparison and Conclusion 

The above theoretical expressions provide a means for evaluating the false alarm and 

detection performance in specific cases. The performance comparison will be conducted 

in the following two parts. One is made by varying the signal cancellation and degree-of- 

polarization parameters in order to examine whether the MB system (j£l) can outperform 

the SM (J=l). This performance comparison has done with the OMBPD, whose detection 

probability is expressed in term of these two prameters, which are troublesome for SB system. 

The other one is to compare not only MB vs. SB, but also optimum vs. adaptive system 

with the MBPC based detector. 

The system constraint used here for comparison of SB and MB is that the two to be 

compared have the same SCNR. Under this constraint, therefore, a system with the larger 

J has the lower SCNRj. This chosen constraint says to be the least favorable to MB system 

[19] [23]. The SB input SCNR is, thus, defined by 

SCNRSB = J ■ SCNRj (2 - 52) 

The first part of comparison presents the MB signaling as the cure for the problems 

occurred by SB signaling. The OMBPD will be the basis for this performance evaluation. 

The signal cancellation problem in OSBPD is illustrated in Fig. 5, which is a plot of 

detection probability vs. input SCNR with different £ values. It can be seen that there is 

15 dB. loss, for 90 % desired detection probability, when the angle away from the maximum 

response (£) is 80 degree. 

In addition to the signal cancellation problem, there is another problem with SBPC based 

detector. That is the severe degradation of performance due to low degree of polarization, 

called the sensitivity problem. Fig. 6 shows the probability of detection vs input SCNR for 

OSBPD based detector with different degree of polarizations, i.e., 7 = .1, .3, .5 and .95. It 

indicates that the degree of polarization is the important factor in SB based detector. It 

shows that the level of cancellation which may be achieved by the polarization canceler is 

limited by the unpolarized component of the clutter backscatter. 

The MB signaling, again, takes care of this sensitivity problem, since the degree of polar- 

ization induced in each channel is depended on frequency, and the largest degree of polar- 

ization among channels is going to primarily affect detection performance. 
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Fig . 7 and Fig . 8 represent the performance comparisons of MB (J = 4) and SB 

polarimetric detector under equal system constraint with the signal cancellation, and the 

sensitivity problem, respectively. Reasonable hypothetical parameters are used for the com- 

parisons : For Fig.7, 7 = .9, for MB : & = 85, 6 = 80, & = 70 and £4 = 5 vs. for SB : £ = 

80, and ; for Fig.8, ( = 0, for MB : ^ = .01, 72 = .1, 73 = .15 and 74 = .95, vs. for SB : 

7 = .2. These two particular examples show that MB system yields considerable amount of 

gains (7 and 4 dB., respectively) against the SB system. 

The optimum performance analysis developed in this first part of computer simulation 

not only reveals that MB signaling for polarization canceler based detection significantly out- 

performs the conventional SB signaling under the toughest system constraint characterized 

in Eq. (2-52), but also serves as the performance bounds for the SB and MB polarization 

canceler based detectors when a radar system transmits a single polarized waveform and 

receives the dual-polarized return. 
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SBPC Based Detector Perf. with Signal Cancellation Problem 
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Figure 5: OSBPD Performance with Signal Cancellation Problem when 7 = .95 :  (1) ( 
80, (2) £ = 70, (3) £ = 40, and (4) £ = 0 degree. 
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OSBPC Based Detector Performances with Sensitivity Problem 
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Figure 6: OSBPD Performance with Sensitivity Problem when £ = 0 degree : (1)7 = •!> (2) 

7 = .3, (3) 7 = .7, and (4) 7 = .95. 
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MB vs. SB with Signal Cancellation Problem 
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Figure 7: OMBPD vs. OSBPD with Signal Cancellation Problem under the Equa\-SCNR 
System Constraint when 7 = .9 : (1) for MB £x = 85, £2 = 80, £3 = 70 and £4 = 5 degree, 
and (2) for SB £ = 80 degree. 
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MB vs. SB with Sensitivity Problem 
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Figure 8: OMBPD vs. OSBPD with Sensitivity Problem under the Equa\-SCNR System 
Constraint when £ = 0 degree : (1) for MB ^ = .01, 72 = .1, 73 = -15 and 74 = .95, and 
(2) for SB 7 = .2 
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In the second part of this analysis, the performance evaluation of adaptive system over 

optimum system as well as MB signaling over SB signaling is presented based on the polaiza- 

tion canceler based detector. The adaptive implementation is compared with its optimum 

realization to provide a performance bound. 

The polarimetric model parameters are as follows: 

Rc = a\ (2-53) 

which is similar to the single transmit and dual receiver version of a meadow clutter example 

given in [22]. The complex correlation coefficient g between the voltages xh and xv is defined 

in Eq.(2-6) with 0< \g\ <1. Together with degree of polarization parameter, it provides a 

useful description of the time-varying polarized waves. The power ratio between co-polarized 

and cross-polarized channels is specified by e, with 0< e <. It is shown in the MB modeling 

section that the magnitude of correlation coefficient is always less than and equal to the 

degree of polarization, \g\ < 7. A deterministic target polarization vector (ps) requires an 

arbitrary choice of polarimetric phase, which has been shown in [22] that the phase value 

selected does not significantly alter performance of the adaptive detector whthe respect to 

the corresponding optimum performance. In the following we set ps=[l, l]T/-y/2, cr?=4.75, 

e = 0.58, and g=A. 

Under the system constraint characterized in Eq.(2-52), Fig.9 shows optimum/adaptive 

MBPC based detector performance when CNR = 6.8 dB., K=2, and Pfa = 10-5 for SB 

(J=l) and MB (J=4) : (l)ASBPCBD, (2)OSBPCBD, (3)AMBPCBD, and (4)OMBPCBD. 

It indicates that the improvement due to MB signaling in the adaptive detector is much 

greater than that in optimum detector. MB signaling improves performance by increasing 

the quantity of independent and identically distributed (i.i.d.) date vectors available for 

clutter estimation. As a practical matter, this additional i.i.d. data vector for clutter statis- 

tic estimation is often required since an observation interval is severely limited due to the 

inhomogeneous nature of the enviornment. The total gain of the AMBPC over ASBPC is 

attribute to the combination of signal cancellation reduction, better adaptation, and a fluc- 

tuation reduction of the degree of target polarization, in addition to the well-known target 

amplitude fluctuation reduction. 

Two principal results have been illustrated by each with different detectors : 
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(1) The MB signaling overcoms the problems occurred by SB signaling, which has been 

revealed with OMBPD algorthm. 

(2) The MB signaling delivers adaptive processor much greater performance improve- 

ment than that observed for its optimum processor, which has been revealed based on opti- 

mum/adaptive MBPC based detector. 
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Optimum/Adaptive MBPC Based Detector Performance 
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Figure 9: Optimum/Adaptive MBPC Based Detector Performance under the Equal-S'CW.ft 
System Constraint when CNR=6.8 dB., K=2, and Pfa = 10~5 for SB (J=l) and MB (J=4) 
: (l)ASBPCBD, (2)OSBPCBD, (3)AMBPCBD, and (4)OMBPCBD. 
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2.2    Experimental Performance Demonstration 

Our interest in this section is to compare the detection performance of the Adaptive 

Multiband Polarization Canceler (AMBPC) with the Adaptive Single Band Polarization 

Canceler (ASBPC) under the equal SCNR system constraint using measured data. The 

following three sections are an approach and plan for demonstration, an experimental results, 

and conclusion and discussion. 

2.2.1     Approach and Plan for Demonstration 

The data collection activity consists of recording dual-polarized returns from clutter and 

targets of opportunity using the S-band radar system located at the Rome Laboratory (RL). 

The relevant S-band radar system parameters for this demonstration are listed in Tabel 1. 

We chose the number of frequency diverse subbands J to be 4, SB pulse width to be 8 

microsecond, MB subpulse width to be 2 microsecond, and frequency separations to be 

2 Mhz. with no additional subpulse modulation. Simple frequency diversity signaling was 

considered in this experiment as illustrated in Fig.ll, where each subpulse of width r' = T/J 

has a different carrier frequency with an arbituary narrow-band modulation of its own. These 

waveforms and their spectra are displayed in Fig. 12. In order to minimize the injection of spur 

energy to other band, due to I and Q channel mismatch, non-symmetric frequencies selected 

relative to carrier frequency (3.35 GHz.) were chosen for the MB case. We transmitted 

a single vertically polarized and pulse-to-pulse interleaved SB and MB waveforms which 

should be capable of obtaining backscatter dynamics occurred almost at the same time. The 

performance comparison of ASBPC and AMBPC is presented by the simultaneous display 

of SB and MB test statistics with respect to range and pulse index. A configuration of the 

demonstration is shown in Fig.10. The pulse-to-pulse interleaved signaling for transmission 

is presented In Fig.ll. Both orthogonal polarization channels (v and h) of SB and MB for 

clutter (H0 hypothesis) and target plus clutter (Hx hypothesis) data were received. The range 

window is set at inbetween 30 and 120 microseconds from time zero, which corresponds to 

4.5 to 18 Kilometers in range. The digitized baseband outputs were buffered and transcribed 

to VAX-compatible 9-track digital magnetic tapes. Data analysis at Syracuse University was 

performed using software realizations of proposed processing algorithms. 
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Table 1. The relevant S-band radar system parameters. 

Operating frequency 3.35 GHz. 

Pulse Repetition Interval (PRI) 2 millisecond 

Subband Separation 2 MHz. 

Pulse Duration 8 microsecond 

A/D Resolution 12 bit 

A/D Sampling Frequency 10 MHz. 

Number of Subbands (J) 4 
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Figure 12: SB and MB : Waveforms and Their Spectra. 
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As far as canceler weight estimation is concerned, a minimization criterion is applied to 

the output power of the pulse smoothed data sets. For adaptation at the present range, 

the previous range index data were used to estimate weight. The impact of this weight 

window size in a nonstationary clutter enviornment is significant. The larger the size, the 

less tracking capability. As a comparison, we chose this weight window size to be 5, and 

the pulse smoothing size to be 5. The block-diagrams of the ASBPC and AMBPC based 

detectors are shown in Fig. 13 and Fig . 14, respectively. 

For a given probability of false alarm (P/a = 10-5), and the estimated output power 

made it possible to set the thresholds for both detectors. 
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2.2.2    Experimental Results 

Fig.15 shows a plot of detection statistic above the threshold for range and pulse index, 

includes SB and MB. As seen in this figure, the target is detected only in one return for 

SB, and detected almost all returns in MB case. The detection statistics of SB and MB vs. 

pulse index for the test cell containing the target is plotted in Fig .16 and 17, respectively. 

Also, Fig.18 is a plot of degree away from maximum response 3 vs. pulse index for both SB 

and MB case. For the MB case only that subband which most closely matches the maximum 

response is plotted. This improved detection performance of AMBPC based detector is due 

to reducing the polarization angle-similarity (between target and clutter) problem as seen in 

Fig.18. 

3Maximum response occurs when the arget and clutter polarization angle difference is 90 degree 
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SB : Detection Statistic after thresholding 

range index pulse index 

MB : Detection Statistic after thresholding 

range index pulse index 

Figure 15: Detection Statistic above thresholds (Pfa = 10-5) ; target is detected only in one 
return for SB case, whereas target is detected in almost all returns for MB case. 
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SB : Detection Statistic vs. pulse index at the target range 
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Figure 16: SB Test Statistic vs. pulse index with threshold (P/a = 10~5). 
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MB : Detection Statistic vs. pulse index at the target range 

U 

O 

Figure 17: MB Test Statistic vs. pulse index with threshold (Pfa = 10~5) 
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SB and MB : Degree away from maximum response 

I o 
Q 

40 45 50 

Pulse Index 

Figure 18: SB and MB : Target-clutter polarization angle difference away from the best one 
; average = 44.1 degree for SB and 17.2 for MB. 
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2.2.3    Performance Demonstration Conclusion and Discussion 

For the slowly/tangentially moving targets detection problem in active systems are solved 

using frequency diversity signaling as applied in the Adaptive Polarization Canceler demon- 

stration presened in this section. It is shown to significantly outperform the conventional 

(no diversity) signaling under equal transmit energy constraints. The experiments showed 

that in cases where target and clutter polarization angle difference were similar, the SB pro- 

cessor severely attenuated the target along with the clutter. The AMBPC based detector, 

however, eliminates these signal cancellation and sensitivity problems since each frequency 

potentially yields different polarization states and different degree-of-polarizations for the 

same clutter. Neither the target is canceled in every subband of the MB processor, nor the 

very low degrr-of-polarization would have with a very high probability. 

The results of this demonstration clearly reveal that the AMBPC based detector has the 

potential to almost completely eliminate the polarization angle-similarity problem (between 

target and clutter) associated with target detection via ASBPC based detector. 

Advantages of frequency diversity in adaptive polarization processing are sufficient to 

justify an investigation of the adaptive Ultra Wide Band (UWB) polarization processing 

capabilities. 
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II.3    OPTIMUM UWB POLARIZATION PROCESSOR 

3.1    Introduction 

In order to improve the detection of targets in distributed clutter, one radar technique is 

to reduce the amount of signal energy backscattered by the clutter [38],[39],and [40]. This 

can be accomplished by reducing the range resolution cell of the radar using Ultra-Wideband 

(UWB) signaling [37] so that fewer scatterers are in the resolution cell of interest. UWB 

has been variously defined as one having a bandwidth 25 to 100% of the center frequency in 

the radiated spectrum. For any given frequency, this results in an unusually high resolution 

capability compared with most traditional radar approaches. 

Due to the reduction of the range cell size, the familiar point-target modeling is no longer 

adequate to describe the received target return from the transmitted UWB waveform. In 

fact, the individual part of a target can be well resolved so that the multiple dominant scat- 

tering (MDS) centers of the target may appear in a number of well-separated range cells 

[41]. The effects of the clutter reduction and MDS target model on the system detection 

performance have been studied in [23],[44], where the detectability of the range-extended 

targets as a function of signal bandwidth has been considered based on single pulse pro- 

cessing. It has been shown that the performance improvement reaches maximum when the 

system utilizes the so-called critical bandwidth which just resolves the individual scatters. 

In the polarization processing, however, further increaing the signal bandwidth beyond the 

critical bandwidth will continuously offer the significant improvement of the detection per- 

formance even for single pulse processing. Polarization processing with UWB signaling for 

radar detection has unique advantage in addition to the existing UWB signaling advantages. 

That is, when UWB radar waveforms are used for increasing the down-range resolution, this 

can, in fact, provide the resolution between the scattering centers, and hence less ambiguous 

polarization state formed from its dominant scattering center. In fact, due to low radar 

resolution, many unresolved backscattering centers interact in generating the target return. 

Furthermore, the contributions of the backscattering centers, and particularly their relative 

phase, are quite sensitive to the target aspect. Consequently, during the observation time, 

polarization state descriptions of the target return are very unstable and ambiguous. For this 

reason, the UWB signaling excitation, and its polarization processing makes the exploitation 
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of the target information more profitable. 

However, there are associated disadvantages as well, as evidenced by the preference to use 

the narrowest bandwidth consistent with need in order to minimize the processing burden. 

For example, increasing a bandwidth ten times has significant impact on the cost of system 

since, for a given surveillance volume, the number of resolution cells to be processed and the 

required processing for detection are both proportional to the bandwidth. In addition, the 

ten times increase in number of cells, for all else constant, implies about a ten times increase 

in the probability of false alarm or a small decrease in system sensitivity. For these reasons, 

UWB are used only when the increased percentage bandwidth presents a distinct advantage. 

The limitations of UWB signaling in polarization processing have been studied in [43]. In 

the under-resolved and the over-resolved cases the polarization state of the target from the 

combined scatters, or of the individual scatterers is approximately well defined. However, in 

the almost resolved case applied by the critical bandwidth, the polarization state of the target 

within a range cell is not well defined. From this study, it can be concluded that for range 

extended targets complete polarization state descriptions can be precisely made only using 

monochromatic illumination (infinite radar range resolution length). The monochromatic 

restriction can be relaxed for the special case of a target with zero range extent. The 

quasi-monochromatic approximation will be valid only when the radar range resolution is 

significantly larger than the target range extent. Alternately, the approximation will be valid 

if the range resolution is significantly smaller than the range separation between individual 

scatterers and larger than the individual scatterer range extent. However, in the general 

case, precise and complete polarization scattering measurements cannot be made when the 

radar range resolution length approaches the range extent of the target or of the individual 

scatterers. 

In addition to the limitation and disadvantages of UWB signalling in polarization pro- 

cessing, there needs to develop the mathematical representational technique for the UWB 

waveform data. People are familiar with the complex envelop representation for the return 

from NB signalling. The Relative Bandwidth (RBW) of the UWB system is large so that the 

complex envelop representation is not adequate. Also, a familiar-point target modeling for 

NB case is no longer adequate in UWB system. In this study, the waveform-based represen- 

tational technique for the UWB data return is developed. This representation degenerates 
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to the conventional complex envelop representation under the assumption of small RBW and 

NB. For this reason we classify that as the most general representation for the large RBW 

signal. 

A probabilistic target modeling for individual scattering centers is proposed, and shown 

to be consistent with the NB's point target modeling when all the MDS centers are added 

over the NB's resolution cell. The mathematical modeling of target, clutter and receiver 

noise plays a key role in the development of hypothesis testing algorithms. Following lists 

of assumptions are the frames for development of the UWB polarization waveform data 

modeling : 

Assumption 1. The dominant scattering centers are well-separated in range, and the 

range resolution length must be large compared to its dominant scatterer's range extent. 

Assumption 2. The target return from each dominant scattering center may be mod- 

eled over the observation interval as a deterministic vector with unknown parameters. The 

unknown amplitude may consist of the one-dominant scatterer and many small fluctuating 

scatterers, which correspond to one-dominant-plus Rayleigh amplitude fading. 

Assumption 3. The UWB target modeling leads to the point-target modeling if we sum 

up all the scattering centers over the same range cell of NB system. Assumption 4. The 

UWB waveform returns from clutter part follow a zero mean Gaussian random process for 

h and v channel. 

Assumption 5. Clutter enviornment over the observation range widow is homogeneous. 

Assumption 6. The UWB receiver introduces zero-mean white Gaussian random process 

for receiver noise into each h and v channel. The receiver noise is independent from channel 

to channel. 

The above assumptions are realistic and economical with regard to introduction of un- 

known parameters. These enable us to begin development of realizable processing algorithms. 

Furthermore, in order to make easy of deriving the optimum detection performance without 

loss of too much generality, following additional assumptions will be needed : 

Assumption 7. The target amplitudes for individual dominant scattering centers are 

independent and identically distributed. 

Assumption 8. The clutter and receiver noise in the particular observation range cell 

is assumed to be statistically independent of the clutter and receiver noise in every other 
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observation interval. 

Assumption 9. The target scattering center locations are known a priori. 

Assumption 10. The polarization states from the dominant scattering centers are assumed 

to be the same for all and known a priori. 

The use of MB waveforms applied to various radar systems for improved target detec- 

tion has been well-established [18],[19]. In Chapter 2, we demonstrated the advantages of 

frequency diversity signalling in a polarization canceler based radar system, which relies on 

the fact that by establishing a bank of adaptive polarizations for J subband frequency, the 

target return may be preserved in at least one of the diversity channels with high probability. 

Alternatively, the use of UWB signalling in polarization radar systems remains essentially 

unknown, it is not well-established technique. In this chapter we will present the optimum 

UWB polarization processing to examine the state-of-the-art and the potential performance 

benefits and limitations of UWB technique, with particular emphasis on radar detection 

application. The extensive work was tasked with identifying and prioritizing optimum UWB 

polarization processing research to be persued and exploited. The aim of this chapter is 

to shed some light in the intriguing theories of optimum detection for UWB polarimetric 

features, and it will represent the fundamental basis for UWB signalling era in polarimetric 

radar signal processing. 

In practice, the UWB signaling scheme can be implimented using many different ap- 

proaches, asch as FM pulse modulation, phase coding, or impulsive excitation. Of these, 

impulse excitation requires special system performance because the wide bandwidth is in- 

stantaneous, and has in the past been the subject of some controversy due to postulated 

transient effects. The UWB signal we interested in this study is a linear FM type. Fig. 

19 shows the UWB waveform and its spectrum with 50% RBW. In most situations, the 

entire target is covered by the radar beam. Consequently, only the range dimension of the 

resolution cell can be made smaller than the target size. 

The ensuing material in this Chaper is organized as follows : Section 1 affords the 

waveform-based UWB polarimetric data modeling for large RBW, small RBW and NB 

cases, Section 2 considers their optimum processings and corresponding analytical detection 

performances when just one pulse is transmitted towards the target. 
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Figure 19: UWB Waveform and its Spectrum 
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3.2    UWB Data Modeling 

3.2.1    Waveform-Based UWB Data Model 

It is natural to assume that the relative bandwidth (RBW) of the UWB system is large 

(larger than 10%). In the case when the test cell size in range is significantly reduced, 

a target return from each resolution cell is contributed by the reduced number of closely 

spaced backscattering centers. Neither the conventional complex envelop representation, 

nor the familiar point-target modeling used in MB signalling case is adequate to describe 

the UWB waveform return. Therefore, the original real waveform representation of UWB 

signals will be used. 

Let u(i), size 2x1, be the waveform vector received by an UWB radar system at the 

front end of its dual-polarized receiver. It consists of the returns from the target, clutter as 

well as the internal receiver noise, 

#i:u(i)   =   u,(t) + ue(t) + u„(t)   Q<t<T0 (3-1) 

H0:u(t)   =   uc(t) + uw(t) 0<t<To (3-2) 

where T0 is the total observation time. The dual-polarized receiver from a single polarized 

transmitter obtains the measurement from the Multiple Dominant Scatterers (MDS) which 

can be expressed in matrix form as 

U(t) = [ ui(t) u2{t)   ••• um(i) ••• uM(t) 

Uhl{t) Uh2(t) ■■■ Uhm(t) •••    UhM(t) ,^\ 

Uvl{t)     Uv2(t)      ••■     Uvm(t)     ••• UvAt{t)   \ 

where two subscripts in last equation refer to the receiver polarization state and dominant 

scatterer index, m = 1,2, • • • ,M, respectively. It indicates that the 2M waveform data are 

available to process. 

The mth dominant scatterer waveform data um(t), 2x1, can be expressed in terms of 

received waveform u(t), i.e., 

um(t) = u(t + (m - 1)TM);   0<t<TM (3-4) 

where TM is the observation interval for a single dominant scatterer. Here it is assumed that 

the dominant scatterers are well separated in range, and the range resolution length must 

be large compared to its dominant scatterer range extent. 
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The target, clutter and receiver noise components contained in the received data will be 

modeled as follows. 

Target Modeling 

Let f(t), 0 < t < T, be the transmitted UWB waveform with an energy being unity. 

Since the signal transmitted at the moment t' will be received at moment t, the relation 

between target portion of received waveform u3m(t) and transmitted signal /(£') is given by 

u.« .(*) 
bshr, 

Jm\^ ) —  ®sm * Jrmyt ) (3-5) 

where fm{t') is a time delayed replica of transmitted waveform, with rTO being the round-trip 

delay time for mth scattering center and c being the propagation velocity, 

2 • A0m 
t' m 1,2, M (3-6) 

The attenuation factors for both h and v channel, bshm and bsvm, represent the target 

backscatter, progagation loses, antenna responses, and the radar cross section of the mth 

dominant scattering center. The attenuation vector may be expressed with an unit normal- 

ized polarization state vector psm which is deterministic 

b. 
ar, 

Pshm 

Psvm 
«mPs (3-7) 

A probabilistic target model is employed such that the magnitude, a=am for all m, is 

assumed to be a random variable which is the resultant sum of all the scatterers within 

a range cell assumed to consist of the one-dominant scatterer and many small fluctuating 

scatterers, and its probability density function is given by 

f(\      9ß3 (-3a'/2a|)        a>Q (3-8) 

where a0 is the most probable value of a. Since et represent the energy in transmitted signal 

f(t); then the actual input energy is given by a2et. The definition of a becomes unique if 

reference scatterer energy et is normalized such that 2 • et/N0 = 1, where No is the noise 

power spectral density level. The input signal-to-noise ratio (SNR{n) is related to signal 

amplitude a by 
nl ■ p. 

(3-9) SNRin = i^- = a2 

No/2 
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With the probability density of a given by Eq.(3-8), constant a0 can be related to the average 

SNRin by averaging Eq.(3-9) with respect to a, 

                           TOO 

a2    =          a2fa(a)da 
Jo 

=     r^.ei-^Dda 
Jo   V2a4

0
J 

=   \*l                                                                    (3-10) 

Fig.(20) shows the target probability density function with different SNRin values.   We 

further assume that the random variables a are independent and identically distributed each 

other for all m. This target modeling for the high resolution radar has been used by many 

researchers and proven to be valid. 

The mth scattering target waveform, therefore, can be written as 

usm(0 = amfm(t - rm)pSTO = ampsm{t - rm)                          (3 - 11) 

The target portion of received waveform, finally, given by 

u.(t) = P,(t)a                                                    (3 - 12) 

where 

P,(t) = \Ptl(t-T1),---,p„n{t-Tm),---,psM{t-TM)];   (2xM)               (3-13) 

and 
«i 

a = ;   (Mxl)                                           (3-14) 
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1.2 
Probability Density Function of MDS Target Amplitude 
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Figure 20: Probability Density Function of Target Amplitude 
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Clutter and Receiver Noise Modeling 

The colored noise vector due to clutter is obtained by convolving (with respect to range) 

the transmit UWB signal f(t) with the range-doppler variant scattering vector of the clutter 

process bc(t — A/2, A), where 

bc(t-\/2,\) = 
bch{t-\/2,\) 
bcv{t-X/2,X) 

(3 - 15) 

The each elements of scattering matrix of the clutter is modeled as zero-mean Gaussian 

random process. The colored noise vector becomes 

/oo 
be(t-X/2,X)f(t-X)dX (3-16) 

-oo 

where t is time, A is radar range expressed in units of time, and yfet is the energy of the 

transmitted signal. This expression represents the colored noise vector due to the clutter. 

The clutter covariance functional matrix is defined as a 2x2 real symmetric matrix, 

Kc(t)2) = £{ue(t)uf(z)} (3-17) 

Substituting uc(i) into Eq.(3-17) and bringing the expectation operation into the integral, 

the clutter covariance matrix becomes 

Ke(t, z) =   et Ho Ho E{be{t - A/2, X)f(t - A) 

[bc(z - Ax/2, Ax)/(z - X1)]T}dXdX1 (3-18) 

With some matrix rearrangement, Eq.(3-18) becomes 

Kc(i, z) =   et ZT«, irL f(t - A) • E{bc(t - A/2, \)b*(z - Ax/2, Ax)} • 

f(z-Xl)d\d\1 (3-19) 

Assuming the returns from different range intervals are statistically independent and that 

the return from each interval is a sample vector function of a stationary zero-mean Gaussian 

random process, then the expectation term in Eq.(3-19) turns out 

E{bc(t - A/2, X)b*(z - Ax/2, Ax)} = KDR(t -z,X)- 6{X - Ax) (3 - 20) 
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where 

K     n_    n _ P / f IM* ~ A/2, \)beh{z - X,/2, X,)}   [bcv(t - A/2, \)bch{z - XJ2, X,)} 
DR[    z^)-*\[ [^-AAA^-AiAAO]   [6CT(t-A/2,A)M^-Ai/2,A1)] 

(3-21) 

The subscript 'DR' denotes that the clutter is doubly spread in both doppler and range, and 

KD.R(£ — z, A) is known as tensor correlation matrix [ ].  Taking the expectation inside the 

matrices Eq.(3-21) becomes 

KDR(t-z,X) 
[h,h(t-z,\)]    [kVih(t-z,X)\ 
[kh,v(t- z,A)]    [kViV{t- z,A)] 

(3 - 22) 

Eq.(3-22) provides 4 different elements (discriminants) when one considers the statistical 

behavior of the polarization random process scattering matrix. Since the scattering matrix 

is a non-negative real process, then the number of independent elements reduces to 3, still 

providing a selection of discriminants. 

After substituting Eq.(3-16) into Eq.(3-15) and carrying an integration with respect to 

Xi, the clutter potion of the waveform covariance matrix finally becomes 

K }{t - X)KDR{t - z, X)f(z - X)dX (3 - 23) 
-oo 

It is also assumed that each element in Kc(£, z) is square-integrable and that the receiver 

noise and clutter components are independent. Then the total waveform covariance matrix 

of the receiver noise and clutter is given by 

Kn(t, z) = ^1 S(t -z) + Kc(t, z) (3 - 24) 

where I is an 2x2 identity matrix. 

For the clutter part, the waveform covariance matrix Kc(£, r) can be approximated by [ ] 

Kc(t,T) = ^Rc-6(t-T) (3-25) 

where Rc, size 2x2, is the clutter covariance matrix. Therefore, the total covariance matrix 

of the clutter and receiver noise is given by 

Kc(t,r) = (^Rc + ^1) .8(t-r) = R- 8(t - r) (3 - 26) 

where R is the total noise covariance matrix. 
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The waveform representation technique of UWB data given in this section provides most 

general in the sense that it is suitable for all types of waveforms. The target modeling is 

extended to two special cases : (1) The waveform that has very large bandwidth, but its 

RBW is less than 10%. (2) The narrowband waveform. 

3.2.2    Special Case : Small Relative Bandwidth 

The carrier frequency f0 is verry high compared to the bandwidth of UWB system. As the 

relative bandwidth RBW=B/f0 is less than 10%, the conventional orthogonal receiver using 

inphase and quadrature channels can be formed to reduce the effect of phase fluctuation. 

The complex envelop representation method for expressing the received target return will be 

utilized here. Let the transmitted UWB signal be 

f(t) = c(t)ei2*fot+ie{t) (3 - 27) 

where c(t) and 9(t) are the amplitude and phase modulation of the waveform. Applying it 

into Eq.(3-5) yields 

um(t)   =   bsmc(t - rm) e^fot-iuform+,e(t-rm) 

=   bsmc(i - rm) e'^-'2^ (3-28) 

where c(t - rTO) = c(t - rrn)e
ö('~rm). Obviously, the high frequency term can be removed 

by passband-to-baseband conversion. Thus after the passband-to-baseband and orthogonal 

preprocessing, the target complex envelop vector becomes 

üsm(t) = bsmc(t-Tm). (3-29) 

Using Eq.(3-7) and Eq.(3-ll) we get 

ü«n(0 = öcmc{t - rm)psm = apm(t - rm) (3 - 30) 

where äm is the complex random variable and its probability density function of an amplitude 

a = | äm | is defined in Eq.(3-8). 

Therefore, the target portion of received waveform for small RBW is given by 

ü.(t) = P.(i)ä (3 - 31) 
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where 

P.W = [P,i(< ~ Ti), ■ ■ ■, Psm(t - Tm), ■ ■ ■, psM{t - rM)\;   (2 X M) (3 - 32) 

and 

«i 

Or, 

L ocM 

■   (Mx I) (3-33) 

3.2.3    Consistence of UWB and Narrow Band Models 

The individual scattering radar return by UWB signalling has been modeled as one 

dominant plus Rayleigh fluctuating for each dominant scatterer amplitude distribution, and 

it is assumed that the dominant scatterers are independent each other. The low range 

radar return by NB signalling, however, has been modeled as Rayleigh fluctuating target. 

Following shows the consistency of two target models between the UWB and the NB system. 

A sufficient consistency can be checked by sum of all reflections within a NB range cell. 

For the NB case, the target returns are actually composed of many scattering centers, so 

the total received target waveform is 

Üs(t)      =     J2Üsrn(t) 
m 

m 

«   a0c{t-T0)ps (3-34) 

where ä0=Emäm, T0=J2mrm/M, and ps=£mpsm/M. The central limit therom argument 

is applied to obtain the last equality in above equation. Then, äo is a complex Gaussian 

random variable, which we originally used for target modeling of NB system. It turns out 

the UWB target modeling leads to the point target modeling if we sum up all the scattering 

centers over the same range cell determined in NB system. 
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3.3    Optimum Processors and their Detection Performance 

3.3.1    Optimum UWB Polarization Based detector 

Assume that the received data u(t), 2x1, has a waveform covariance matrix given as 

follows 

K(*,T) = RAC(*,T) (3-35) 

The input UWB waveform return process u(t) can be expended in scalar eign functions and 

vector coefficients system : 

u(t) = Eu^W (3-36) 
fc=i 

where 

ufc = [T° u(t)Mi)dt (3 - 37) 
Jo 

Observe that the <f>k(t), fc=l,2,- • •, are the scalar eign functions and uk, fc=l,2,- • •, are the 

vector coefficients. 

Under Ho, we would like to find a set of A^ and (f>k such that 

£(ufc) = 0;   A: = 1,2,--- (3-38) 

E(uku») = RXkSki (3 - 39) 

and 

[T0 MWiWi = 5ki (3 - 40) 
Jo 

These requirments need to satisfy the equation of 

RA*4(<) = I7" K(t, r)cj>kdr (3-41) 
Jo 

where \k are the eignvalues of /c(t, r) corresponding to the eigenfunction (f>k(t), and Ski has 

a non-zero value equal to 1 only if k=i. 

Under the assumption that u(i) is a bivariate Gaussian process, uk,k = 1,2,-, are also 

bivariate Gaussian vectors independent each other based on Eq.(3-39). With constant d0 

independent of uk the joint distribution of the first K vectors can be expressed as 

/(ufc,* = 1,2,-,^ | Ho) = doexpi-W""* *"*) (3 " 42) 
fc=i 

139 



Substitute Eq.(3-37) into the above equation yields 

/(u»,t - 1,2,-, if | H0) = <***-\JI «'i')«y>)jMr)       (3_43) 

As fc —* oo, define 

,((,r) = £MÖ«i) (3_44) 

which is referred to as the inverse kernel of AC(£,T). It is well known that K(£,T) and q(t,r) 

has the following relation 

[ K(t,u)q(u,T)du = S(t-T) (3-45) 

Therefore, the likelihood function with K approaches infinity under HQ hypothesis becomes 

/(u(t) | H0) = dQexp{-1- J J u^ORry*, r)u(T)dtdr) (3 - 46) 

In the case when q(t,r) = 8{t — r) which we specified in Eq.(3-22), we have 

f{u{t) | H0) = d0exp{-- J uH(i)R"1u(f)^) (3 - 47) 

Under Hi, the likelihood function can be written similar way 

f(u(t) | Hi) = d0 ■ exp{-1- J[n(t) - ns{t)\H^XW) - u.(*)]*} (3 - 48) 

The MDS target modeling which we developed in in waveform-based UWB modeling section 

presents the returns from all the scattering centers 

M 

u.(*) = E amP™(< - Tm) = P.(0 -a (3 - 49) 
m=l 

where rm is arrival time of mth scatterer, and Ps(t) and a are specified by Eq.(3-13) and 

Eq.(3-14), respectively. The exponent part of Eq.(3-48) after substituting Eq.(3-49) becomes 

- \ JW) - us(f)]HR-1[u(0 - u,(t)]dt (3 - 50) 

= -]-{J nH{t)R-l\i{t)dt - J uH{t)TCl*dt (3 - 51) 

- J *HlP*{t)RrxM{t)dt + J a*P? WR-'Fs(t)adt} (3 - 52) 
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Let us define 

G = y"pf(i)R_1P,(0;   (MxM) (3- 53) 

u = yPf(t)R-1u(t)^;   (Mxl) (3- 54) 

Then Eq.(3-52) becomes 

-|{/uH(0R_1u(t)^ " u"a - aHu + affGa} 

= - -i{/ u^OR-y*)^ + [a - G-'upGfa - G"xu] + u^G^u} (3-55) 

The uniformly most powerful test approach with respect to amplitude a to find the likelihood 

test is formulated, which implies that the random variable a to think of it as the constant 

ampplitude.   It can be shown that the amplitude distribution statistics does not alter the 

likelihood ratio test. 

As we are assuming the amplitude of the scatterers are unknown, the likelihood ratio test 

is formulated as following 

77 - max{                      ) < T)0 a     f(u(t) \ H0)  H0 

(3- -56) 

Note that when a = G_1u, the maximum to f{u(t) \ Hr) can be achieved, then 

Hi 

TJ = exp{uÄG-1u}<770 
H0 

(3- -57) 

Since exp(-) is a monitonically increasing function, the equivalent test becomes 

£ = {u^G-'u}   >   £0 
Ho 

(3- -58) 

The optimum UWB dual-polarized channel receiver is designed for detecting a target in 

clutter as well as white noise. The optimum receiver follows the threshold comparison test 

accordingly with Eq.(3-58) where G and u satisfy the Eq.(3-53) and Eq.(3-54),respectively. 

A block diagram of the optimum UWB polarization processor is presented in Fig. 21 
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Figure 21: A block diagram of the optimum UWB polarization processing. 
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=   e " ■   E   7177^ 7F (3"6°) 

Under additional assumptions listed in introduction of UWB processing (Assumption 

7 to 10), the derivations of detection and false alarm probabilities for the optimum UWB 

polarization processing are following : The test statistic I under HQ hypothesis will have 

a Chi-Square distribution since the random variable of decision statistics still preserve the 

Gaussionality as they are the linear combination of the input data vectors, with its proba- 

bility of density function being 

^|/f°)=(M/2-l)!-<(M/2""-e"'- (3_59) 

The probalility of false alarm is thus 

Pfa   =    /    ft(l\Ho)d£ 

Af/2-1        pM/2-m 
-to       V" Co 

tx   (M/2-m)! 

Probability density ft(t \ Hx) is obtained by the method of characteristic functions. For 

this purpose ft{t \ #i) can be writtern as 

M£\H1) = ft(l\~z,H1) (3-61) 

where a represents the random amplitudes {^,02, • • ■, aM) of each scattering centers. Char- 

acteristic function C*(s)a of sum random variable £=£m=i u2
m is related to the characteristic 

functions of random variables u2
m, m = 1,2, ■ • ■, M/2, by 

M/2 

C<(*)a = n ^(^)™ (3-62) 
771 = 1 

Since Cuii(s)m is the same for all m, Eq.(3-62) becomes 

Ce(s)& = [Cul%(s)m}M'2 (3-63) 

An expression for Cu2n(s)m is obtained from [5], with M=2 and a = am : 

c<(^{1+A/^A_^r (3"64) 

Substituting Eq.(3-64) into Eq.(3-63) results in 

C'Wa-(l+A/4)«(!T^+S)« (3    65) 
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The inverse Fourier transform of Eq.(3-65) is obtained from transform pair. This yields the 

following expression for feu(£ | Hi) : 

/(M/2)-l .    -//(l+A/4) -A/M 

W I g.) = (1 + A/4)M((M/2) _ 1}! w-w, MA TTiTi (3-««) 

where the confluent hypergeometric function 1F1(—M/2, M/2;c) is given by [5] 

lfl(-M/2,*/ftt)=E1(M/2 + m_1)!/p/2hl)!ri (3-67) 

Substituting Eq.(3-67) into Eq.(3-66), the probability density function of £ under üfj turns 

into a density function specified by 

f(flH,_ K^)-i . e-W+a/O • (M/2)! (^2)     A/4  r»  
M   '    lj (1 + A/4)M i'1

ll+A/4j    m!((M/2)-m-l)!((M/2)-m)! 
(3 - 68) 

with A being the average signal-to-clutter-plus-noise ratio of the optimum receiver output, 

that is 

A = SNRm ■ pf R-1?, (3 - 69) 

where SNRin is the average input SNR defined in Eq.(3-9), and psl = p52 = • • • = psM = ps 

according to Assumption 10. 

Then the probability of detection is found to be 

p _  f°° IW)-1 ■ e-</(i+a/4) ■ (M/2)! (y}     A/4  r_  
d~L (1 + A/4)M '^/l + A/4J   "m!((M/2)-m-l)!((M/2)-m)! 

(3 - 70) 

The optimum UWB polarization processing developed so far is directly based on the received 

waveform without any preprocessing. 
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3.3.2    Optimum UWB Polarization Based detector with Small RBW 

The orthgonal receiver structure and passband-to-baseband conversion are applicable to 

the dual-polarized UWB waveforms with small RBW. Let ü(t) be the waveform vector after 

the processing and its carrier component being removed, it consists of 

u(t) = ü,(i) + uc(t) + uw(t) (3 - 71) 

where uc(£) and üw(t) are the complex random vectors representing the clutter and noise, 

respectively, and 
M 

ü.(t) = £ *mpsm(t - rm) = P.(t) a (3 - 72) 
771 = 1 

with Ps(^) being specified by Eq.(3-ll) and ö the complex amplitude of mth scatterer and 

the probability density of its magnitude being specified in Eq.(3-12). 

Applying the optimum processing developed in the previous section to the complex wave- 

form, the log-likelihood ratio test becomes 

* = üHG-1ü   >   4 (3-73) 
Ho 

where 

G = j'pfr(^)R-1P,(*);   {MxM) (3-74) 

and 

Ü = J pf (i)R_1ü(t)Ä;   (M x 1) (3 - 75) 

Note that uc(i) and \iw(t) are the complex Gaussian processes if uc(t) and uw(t) are real 

Gaussians. After the exact assumptions ,listed in Introduction section, being applied, the 

false alarm and detection probabilities are found to be, respectively, 

Pfa   =    /    ft{i\HQ)dl 

M—\      pM—m 

• e~'°'£(^ (3'76) 

and 

p —        _ _    X^ (       I      )m dt   C\ — 77) 
d     h0 (1+A/4)2M ^l + A/4;      m!(M-m-l)!(M-m)!        ^ ; 

with 

A = SNRtn ■ pfR-'p, (3 - 78) 
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3.3.3     Optimum Narrowband Polarization Based detector 

From Eq.(3-34) 

üs(t) = aQc(t - r0)ps (3-79) 

Substituting it into Eq.(3-74) and Eq.(3-75) yields 

G = J Pf (t)Br*P,(t)dt = pf R-1ps (3 - 80) 

and 

Ü = J¥H
s{t)K-ln(t)dt = pf R-V (3 - 81) 

where y is obtained by the matched filtering 

y = Jc*{t-T0)ü{t)dt (3-82) 

Note that R is defined by ~Rc/2B + N0I/2, which involves dual polarized scattering covariance 

matrix of the clutter. 

Therefore, we have the test statistic 

pfR-Vy^R-1^     ,    H    |2 

PfR_1Ps 
*=/*-! =|wHy|2 (3-83) 

with the weight vector being defined 

w =    gD-i (3 - 84) pfR  p, 

We see that it turns into the familiar optimum processor of the conventional form. 

As we have mentioned in Data Modeling section, the signal amplitude ä0 is naturally 

turns into a complex Gaussian variable with zero-mean and variance cr2s. Thus the mean 

of y is both zero under hypotheses H0 and Hu and its covariance matrix is found to be 

£(uu") = R under H0, and E{uuH) = R + <rs
2pspf under H^. Then I has a Chi-Square 

distribution under both H0 and Hi, 

f(£ | H0) = exp(-f) (3 - 85) 

and 

f(£ | Hi) = exp(-£/(l + A)) (3 - 86) 
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with A being defined as 

A = <7s
2p?R^p. (3 - 87) 

Therefore, its false alarm and detection probabilities are given by, respectively, 

Pf = exp(-4) (3 - 88) 

and 

Pd = exp(-4/(l + A)) (3-89) 

The optimum UWB polarization detection processing has been developed so far is as- 

sumed to have received M dual-polarized echoes scattered by a target illuminated by single 

polarized transmittion. The problem is to process in an optimum way the M dual-polarized 

echoes to detect a target against clutter background and receiver noise. This optimum pro- 

cessor requires a priori information about not only approximate locations of MDS centers 

but also the radar cross section distribution, which are not usually available to the processor 

in practice. The consequence of non-coherent integration approach without knowing these 

information will yield some performance degradation. Furthermore, the above waveform- 

based optimization procedurs involve integral and tensor equation which are very difficult 

to solve analytically. In general even the scalar case is not trivial. No further attempt was 

made to work out an specific example, since the main goal of this study is to compare the 

detection performance improvement of UWB system over the NB system in a polarization 

canceler based detector. However, the nature of these derived equations renders their solu- 

tion a subject in itself. No further attempt was made to work out a specific example, since 

the main goal of this study is to compare the detection performance improvement of UWB 

system over the NB system. However, the nature of there derived equations render their 

solution a subject in itself. 
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II.4    THE DETECTION PERFORMANCE COMPARISON OF NB AND UWB 
SYSTEM 

The detection Performances achievable by the NB, and UWB polarization processors are 

compared in this chapter. The small RBW-based optimum UWB and NB processors given 

in Chapter 3 are the candidates of the comparison. 

In NB system, the bandwidth of the system, denoted by -BJVB, is narrow, so that the 

signal return can be considered as point target, which corresponds to the data modeling 

discussed in section 4.1.3. In UWB system, on the other hand, the range resolution is 

significantly smaller than the range separation between individual scatterers and larger than 

the individual scatterer range extent, so that the returns of the M-MDS are assumed to be 

the independent random variables. This coresponds to a scatterer-to-scatterer one dominant 

plus Rayleigh fluctuation model as described in section 4.1.2. It is shown that the UWB 

target modeling degenerates to a point-target modeling once we sum up all scattering centers 

over the NB's range cell. The bandwidth of UWB system denoted by BUWB is a lot larger 

than BNB, i.e.,BuwB » BNB- 

For UWB signalling scheme in target detection processor, it is widely known that high 

resolution can largely reduce the clutter power contained in a single range resolution cell, 

which it leads to a significant performance improvement in the presence of distributed clutter 

with high CNR. Also, the individual parts of a target can be well resolved so that the 

fluctuation of dominant scatterer is less than that of point target returns of the NB signalling. 

It produces the detection performance gain, and we called that as the target fluctuation 

reduction gain. Lastly, under an equal-transmitted energy constraint, the larger detection 

performance gain is expected for the target with more scattering centers, and we name the 

MDS gain. 

In addition to modeling and processing complexity issues discussed earier, the promising 

features associated with the UWB signalling scheme in optimum system produces the false 

alarm adjustment loss. One should note that the global false alarm rate will raise in com- 

pany with the increase of the range resolution, since the number of the test cells increases 

dramatically accordingly. To maintain the global false alarm at a desired level, the false 

alarm rate each test cell must be chosen lower than normal, which will certainly degrade the 
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system detection performance. 

The following definitions are used for the comparison of two systems. The average clutter 

power for NB and UWB systems are defined as 

^B = ^-MW/2 (4-1) 

and 

<UWB = 1^— ■ tr(Kc,uwB)/2 (4 - 2) 

where tr(-) denotes the trace of the matrix, and Rc is the clutter scattering matrix (size 

2x2). For the purpose of comparison, we set 

Rc = RC,NB = R-c.t/WB (4 — 3) 

and the same Rc specified in Eq.(2-5) will be used, which is for the single transmit and 

dual-polarized receiver version of a meadow clutter example given in [22]. From Eq.(4-2) 

and Eq.(4-3), the clutter power constraint for the comparison is then, 

a2c,NB = ßßW <TC,UWB   i (4-4) 

where ßsw represents the bandwidth ratio, i.e.,ßB\v = BUWB/BNB- The bandwidth ratio of 

two UWB systems say UWB system 1 to UWB system 2 is defined and denoted by ßl. Also, 

the equal-SCNR system constraint applied for the comparisons of NB vs.   UWB system, 

which is 
qrMR   SCNRNB _ SCNRUWB 

where M denotes the number of MDS, and SCNRUWB and SCNRNB are the total SCNR 

for UWB and NB system, respectively, and they are equal. Under these constraints specified 

by Eq.(4-5), therefore, the UWB system with the larger M has the lower SCNRUWB,™ for 

each dominant scatterer. The equation also implies that the NB and UWB system will 

be compared under the same SCNR. As the processing scheme of UWB system differs 

significantly to that of NB system, due to their range resolution, target modeling, and 

type of clutter scattering, a fair comparison in a straighforward way faces the difficulties in 

explaining the results. Therefore, the isolation of each gain and lose achievable by the UWB 

system is presented indivisually. Performance evaluation will be carried out in the following 

on a basis of above constraints. 
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4-1     UWB System Gains with Respect to NB System 

Since the range-cell size resolved by the bandwidth BUWB becomes much smaller than 

that of BNB, the clutter power induced in the system with the bandwidth BUWB will be 

less returned by the factor of ßßw- This clutter power reduction will improve the detection 

performance. The detection performance curves for UWB polarization canceler based de- 

tector as a function of input SNR as shown in Fig.(22) are for the investigation of clutter 

power reduction effect of different bandwidth ratio (ßi). In order to single out the effect 

of clutter power reduction gain, the false alarm adjustment effect is omitted purposely. In- 

stead, the false alarm probability is set to equal for different bandwith ratios. The detection 

performance curves for ßx = 1, 10, 40, and 100 are displayed with M=5, CNR=30 dB., and 

the predetermined false alarm probability P/a=10-5. Fig.(23) is the clutter power reduction 

gain as a function of ßi for M=5, CNR=30 dB. at the detection probabilities of .9, and the 

same false alarm probability condition is applied as in Fig. 22. As indicated in the figure, 

the clutter power reduction gain is about 10 dB. for /?i = 10, and about 18 dB. for /3=100. 

The detection performance gain is large. 

The UWB system can resolve individual scatterers of a target. To the extent that scat- 

tered of a target are resolved, their fluctuation is reduced as compared to that of returns 

from the a point target. Less target fluctuation will improve the detection performance. Fig. 

3-10 presents the two curves, in which (a): optimum UWB polarization processor with M=\ 

and (b): optimum NB polarization processor, when CNR=30 dB. and Pja = 10~5. In order 

to extract the gain only due to less target fluctuation, the clutter power reduction gain is not 

included. It shows about 6.2 dB. gain over NB system for the 90 % detection probability, 

and the gain is gradually smaller while probability detection lower. 

Under an eqmil-SCNR system constraint, the larger detection performance gain is ex- 

pected for the target with more dominant scatterers, and the gain from this effect named 

the MDS gain. 
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Effect of Clutter Power Reduction 
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Figure 22: Probability of Detection vs. Input SNR for ft=l, 10, 40, and 100 when Pfa 

10"5, M=5, and CNR=30 dB. 
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Clutter Power Reduction Gain vs. Bandwidth Ratio 
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Figure 23: Clutter Power Reduction Gain vs. Bandwidth Ratio (ßi) for P^ = .9 when M=5, 
Pfa = 10"5, and CNR=S0 dB. 
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Target Fluctuation Reduction Gain 
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Figure 24: Probability of Detection vs. Input SNR when CNR=30 dB., and Pfa = 10-5 

without clutter power reduction gain. : (a) Optimum UWB (M=l) and (b) Optimum NB. 
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4-2    UWB System Lose with Respect to NB System 

Since the range-cell size (range resolution length) resolved by the bandwith BUWB be- 

comes much small than that of BNB, in the mean time the UWB system will have to process 

more range cells for a given range extent. It would introduce more global false alarm for the 

UWB system. Under the assumption that the decision are independently made in each range 

cells, to maintain the same level of global false alarm rate the probability of false alarm in 

each range cell has a relation that 

Pfa>g = 1 - (1 - PJa)W™ (4 - 6) 

where Pja^ and Pfa denote the probability of global false alarm and that of each cell false 

alarm, respectively, and ßsw is the bandwidth ratio of two system as defined in Eq.(4-4). 

The detection performance curves for UWB polarization processor as a function of SNR 

as shown in Fig. 25 are for investigating the performance loss due to the false alarm constraint 

related by Eq.(4-6).   The prespecified global false alarm probability is set at 10~5, and 

compares the detection performances for /?i=1,10, and 100 when CNR=30 dB. and M=5. 

In order to single out the effect of the false alarm probability constraint, the clutter power is 

set to equal, not changing with the bandwidth. In fact, the performance loss factor, defind as 

the ration of SNR's requires by the two systems to achieve the same probability of detecton, 

is found to be [42] 
SNRj „ ln(PfaA) ^     ln(Pfa) _ 

SNR2 ~ ln(Pfa,2) ~ WPfaJßi) 

where ß\ here represents the bandwidth ratio of UWB system 1 to UWB system 2, and In(-) 

denotes an natural logarithm operator. According to Eq.(4-7), the performance loss factor 

is independent of the signal and clutter characteristics, and is related to the logarithm of the 

probability of false alarm only, which indicates a slight change even if false alarm probability 

varies several orders of magnitude. The actual performance loss factor as a fuction of ß\ is 

quantified and displayed in Fig. 26, and compared to analytical approximation quantities 

governed by Eq.(4-7). In order to maintain the same level of global false alarm in the given 

range extent requires lower false alarm rate in a single range cell and thus will degrade the 

system detection performance in polairzation processor. It is seen that, however, even for a 

very large bandwidth ratio, the detection performance loss is less than 2 dB. 
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Figure 25: Effect of False Alarm Adjustment for ßx=\, 10, and 100 when M=5, CNR=30 
dB. and the global false alarm probability Pfa,g = 10-5. 
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False Alarm Adjustment Loss vs. Bandwidth Ratio 

T3 

CO 
CO 
O 
J 
4-1 

C 

.3 

es 

40 50 60 

Bandwidth Ratio 

Figure 26:   False Alarm Adjustment Loss Factor vs.   Bandwidth Ratio when M=5, and 
CNR=30 dB. for 90% detecion probability : (a) theoretical Approximation and (b) Actual. 
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4-3    Overall Comparion 

Based on the gains and loss earned by UWB signalling in optimum polarization proces- 

sor, the detection performance curves for all the cases are plotted together in Fig.27. The 

detection performance is based on a basis of single pulse, CNR=30 dB., the global false 

alarm probability Pfa,g = 10~5, and the bandwidth ratio /?BW=30. The false alarm adjust- 

ment loss has included in the UWB systems. The four curves represent : (a) Optimum 

UWB Polarization Processor with M=5, (b) Optimum UWB with M=5 and without the 

clutter power reduction gain, (c) Optimum UWB with M=\ and without the clutter power 

reduction gain, and (d) Optimum NB Polarization Processor. From this analysis, the UWB 

system gains are identified against NB system : (I) Target Fluctuation Reduction Gain, (II) 

MDS Gain (UWB M=\ to M=5), (III) Clutter Power Reduction Gain, and (IV) Optimum 

UWB Overall Gain. 

As one can see from Fig.27, the big chunk of gain from UWB signaling is come due to the 

clutter power reduction. The next analysis provides the question if the MB signaling be able 

to achieve the UWB gains not including the clutter power reduction gain. Fig.28 presents 

the UWB equivalent gain (without clutter power reduction gain) achievable by the MB 

signaling on the basis of equal processing complexities (i.e., M=J=5). About 3.5 dB. larger 

gain is obtained by the UWB signaling for .9 detection probability, even without the clutter 

power reduction gain. It leads the conclusion that in the polarization processing for radar 

target detection the UWB signaling clearly yields the more gains than the MB signaling. 

The additional gain mainly attributes to the fluctuation reduction of target polarization; 

by increasing the down-range resolution, this can in fact provide the fine resolution between 

the scattering centers, and hence less ambiguous polarization state formed from its dominant 

scattering center. Together with the clutter power reduction gain, the UWB signaling scheme 

for the polariztion processing is the promising technique for the doppler ambiguous targets, 

with the expenses of processing complexities. 

The UWB gains other than the clutter power reduction gain are something that one can 

not control of, since the number of MDS is determined by a particular target (3 to 5 can 

be the reasonable assumption of it [12]), and the target fluctuation gain does not change 

with the processing scheme. In the MB system, however, the number of frequency diversity 
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is something that one can control so as MB gain, and the previous experiment from Rome 

Laboratory shows that up to 12 frequency diversity can be utilized in order to obtain the i.i.d. 

data return. And, also, the UWB system requires to know the exact locations of dominant 

scatterers. The MB signaling scheme is attractive in those senses. 
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Optimum UWB Polarization Processor : Overall Gain 
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Figure 27:   Optimum UWB Polarization Processor Overall Gain under the Equal-SC/Vß 
System Constraint. 
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Figure 28:   Optimum UWB polarization processor (M=5) vs.   optimum MB polarization 
processor (J=5) both under the Equa\-SCNR System Constraint. 
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II.5    CONCLUSION AND DISCUSSION OF PART II 

This part of report addresses the problem of detecting slowly/tangentially moving weak 

targets, which typically go undetected when only doppler processing is used. The proposed 

method of improving detection performance is to utilize the frequency variational signal- 

ing schemes in polarization processing. Two frequency variational signaling schemes are 

addressed : Multiband and Ultra-wideband. Signaling methods for obtaining the MB and 

UWB polarimetric data returns are discussed. Implementation and performance analysis 

of these technique are studied in detail. The well-known problems of single (narrow) band 

signaling with polairzation canceler based detector has been confirmed and the detection 

performance improvement by using MB signaling is revealed. 

Under the toughest system constraint governed by Eq.(2-52), the MBPC based detector 

was compared with SBPC based detector, in terms of both the optimal solutions and their 

adaptive implementations. The AMBPC based detector elliminates the signal cancellation 

and sensitivity problem since each frequency potentially yields different polarization states 

and different degree-of-polarization; neither the target is canceled in every subband of the 

MB processor, nor the very low degree-of-polarization would appear in every band with 

a very high probability. Analytical and experimental results show that the total gian of 

the MB signaling over the SB signaling attributes to the combination of ellimination of 

signal cancellation, better adaptation, and a fluctuation reduction of the degree of target 

polarization, in addition to the well-known target amplitude fluctuation reduction. These 

results are obtained under the comparable target strength relative to clutter power. 

Also it is observed that the performance improvement obtained by MB signaling, typi- 

cally about 5 dB gain, may be inadequate for weak target detection. Therefore, the UWB 

signaling scheme in polarimetric radar is examined for further performance improvement. 

An additional benefit arises from using UWB signaling, due to a reduction of resolution cell 

size which results in lower clutter backscatter competing with desired target returns. The 

main work is with identifying the potential of the optimum UWB polarization processor. 

The log-likelihood ratio test for the optimum UWB polarization processing has been 

derived, together with the closed-form expressions of detection and false alarm probabilities. 

The optimum UWB polarization processing detection performance is compared with the 
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optimum NB polarization processing, and it is concluded that a significant performance 

gain can be achieved by using UWB signaling. The UWB gain is still larger than that of 

the MB signaling, even after excluding the clutter power reduction gain in UWB systems. 

The additional gain of 5 to 10 dB mainly attributes to the fluctuation reduction of target 

polarization when it is resolved into its multiple dominant scatters. 
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FIGURES 

Figure 1: Pitch-frequencies corresponding to the keys V and 'g in a piano. 
These correspond to the major diatonic scale of western music. 
The spacing is very nonuniform, and will appear to be almost 
uniform on a logarithmic scale. 

Figure 2: A baseband T-pulse with zero mean and no intersymbol 
interference. 

Figure 3: Spectrum of the zero mean baseband T-pulse. 

Figure 4: Derivative of a narrow Gaussian pulse. 
The sampling interval T is 0.15 light-meters. 

Figure 5: Synthesized current response at the center of a thin wire 
activated by a narrow pulse from the broadside. Sampling 
interval is 0.15 light-meters. 

Figure 6: DFT amplitude spectrum (DB) of the derivative of the Gaussian 
pulse. The frequency resolution is 1/(128T). 

Figure 7: DFT amplitude spectrum (DB) of the current response (40T 
thru 167T) excited by a narrow Gaussian pulse. The frequency 
resolution is 1/128T) the sampling interval T is 0.15 light- 
meters. 

Figure 8: An optimum baseband signal of duration 127T.  The in-band 
energy is 99.995% with the bandwidth 2/( 128T). The computing 
frequency resolution was 30 times higher. 

Figure 9: DFT amplitude spectrum (DB) of the baseband signal.   The 
frequency resolution is 1/(128T). 

Figure 10: Modulated signal of duration  127T and center frequency 
25/Ü28T). The corresponding baseband signal has maximum 
energy (99.995%) within the bandwidth 2/(128T). The 
computing frequency resolution was 30 times higher. 

Figure 11- DFT amplitude spectrum (DB) of the modulated signal.  The 
center frequency is 25/(128T). The frequency resolution is 
1/U28T). 
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Figure 12: Fourier transforms (log magnitude) of windows of 
(a) Rectangular 
(b) Bartlett 
(c) Hanning 
(d) Hamming 
(e)Blackman 

Figure 13: Synthesized current response at the center of a thin wire 
activated by a narrow band electric field pulse from the 
broadside. The center frequency of that pulse is 25 sampling 
interval is 0.15 light-meters. 

Figure 14: DFT amplitude spectrum (DB) of the current response (129T 
thru 256T) the exciting pulse has center frequency 25/(129T). 
The frequency resolution is 1/(128T). The sampling interval T 
is 0.15 light-meters. 
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L       OVERVIEW 

This paper describes the T-pulse methodology. T-pulse stands for a time 

limited pulse whose energy may be concentrated in an extremely narrow band. 

Since they are narrowband signals, conventional hardware can be used to transmit 

and receive T-pulses. A T-pulse may or may not have any direct current or DC 

value. From a practical point of view, the T-pulse should have no DC since an 

antenna cannot transmit DC signals. 

This report is divided into two parts. The first part presents the T-pulse as 

a mathematical tool which can be used for accurate and precise time-frequency 

localization of signals. This is useful when the T-pulse technique is used in the 

receiver as a signal processing technique. The second part describes the T-pulse 

as a waveform design technique, which can be used for target identification. This 

section is relevant when a T-pulse needs to be transmitted. Added constraints like 

zero intersymbol interference may be added to the design of a T-pulse, making it 

a versatile tool. A user oriented computer program is presented for efficient 

generation of the T-pulse. 

The objectives of this report have been: 

(1) The development of analytic tools required for the analysis of 

broadband waveforms. 

(2) The synthesis of waveforms which provide optimum performance. 

Various waveform design procedures such as T-pulse, K-pulse and E-pulse are 

presented. 
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(3) The development of a user-friendly computer program so that the 

generalized T-pulse can easily be synthesized once the design objectives have been 

selected. An example is presented on how to utilize the T-pulse for target 

identification. 

For the first objective, a survey is made of various analytic tools including 

the short time Fourier techniques, the Gabor transform and the wavelet transform. 

The strengths and weaknesses of each of the methods have been outlined. 

This brings us to the second objective, namely of synthesis. For practical 

reasons, it is necessary to have an interrogating waveform that is finite in the time 

domain. However, a time limited waveform cannot simultaneously be bandlimited. 

It is necessary to design the shape of the waveform such that most of the energy 

is concentrated in a narrow band and that outside the band, the energy drops 

pretty fast. 

For the synthesis procedure, it is necessary to generate waveforms that are 

limited in time, with its energy concentrated in a narrow band. In addition, since 

one is interested in transmitting this waveform through an antenna, the waveform 

must have zero direct current value. This is an important criteria. These two 

constraints then would give rise to waveforms that will generally oscillate and this 

oscillation would die out after a few zero crossings (one or two at most) in order for 

the waveform to have finite time duration. If we have an oscillatory waveform, it 

is imperative that the waveform be orthogonal to its shifted versions. This would 

guarantee that if one has a receiver sampling the radar returns from various 
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range-bins, then the observation would be in independent bins for different 

waveforms transmitted at different times. Mathematically, this is equivalent to 

saying that the waveform must have no "inter-symbol" interference. Equivalently 

it is said that the waveforms are "orthogonal nyquist signals". 

All the above attributes are desirable in a waveform to provide good 

detection performance. The T-pulse is such a procedure, where any performance 

criteria can be incorporated into the computer oriented design. The computer 

program optimizes various contradictory requirements of small bandwidth, limited 

time, no direct current value and zero intersymbol interference and provides the 

generalized T-pulse. Hence from a theoretical performance criteria of a 

synthesized waveform, the generalized T-pulse meets all the design criteria. 

The next phase of the work involves generation of the T-pulses. It is desired 

to take the synthesized waveform and pass it through an arbitrary waveform 

generator to obtain a generalized T-pulse. This would be the baseband T-pulse. 

This can be amplified and transmitted directly or can be translated in frequency 

through (amplitude) modulation, amplified and then transmitted. The shape of the 

T-pulse depends on what criteria are being utilized for efficient target detection 

and what type of targets one is looking for. The generalized T-pulse excites the 

target in a narrow band of frequencies. If the target has a resonance in that 

frequency band then the radar return is strong, if the target has no resonance in 

the band of the transmitted T-pulse then the radar return is very weak. This is 

equivalent to "zooming" into a narrow band and evaluating detection performance 
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in that band. This type of detection is useful in providing for identification 

performance. For example, if the resonant frequencies of special artifacts of two 

targets are different, then the T-pulse return would also be different. Since the 

transfer function of a linear system provides the finger print of the system, the 

generalized T-pulse provides the transfer function of the target in the narrowband 

in which the energy of the T-pulse resides. Hence high resolution discrimination 

is provided. The T-pulse is particularly useful when one is looking for special 

artifacts like engine blade rotation, which are extremely narrow band signatures. 

An example is presented to illustrate its salient features. 

In other techniques of resonance extraction, one has to look at the late time 

response of the target and from the late time response extract target poles. The 

T-pulse can provide the same information about poles in the frequency domain 

without radiating an impulse. One can interrogate the target at a few "spot 

frequency bands" using the T-pulse and then utilizing various extrapolation 

techniques like Cauchy's method [26-28] or the Matrix Pencil Method [29-31] 

extrapolate/interpolate the resonances of the target. With such techniques, it is 

not necessary to measure the entire frequency band response. A few 

measurements may be all that is required to generate information over a decade 

bandwidth. One of the objectives of the next phase would be to demonstrate this 

experimentally using various laboratory devices. 

The first half of the report describes the analytical techniques for waveform 

design and the last half describes the synthesis procedure. Finally, a user oriented 
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computer program is presented to design generalized T-pulses for radar target 

detection. 

2,        INTRODUCTION 

In nature, one does not encounter pure single tone signals, but signals whose 

"frequency content" varies with time. Generally, frequency is defined as a 

phenomenon where the period of zero crossings of a signal has a fixed duration for 

all times and frequency is related to the period. However, one may define the term 

"instantaneous frequency" by defining signals whose frequency content changes as 

a function of time or duration of the signal. A good example of that is speech, 

where the instantaneous frequency may change from 0-20 kHz depending on the 

system. Hence it is interesting to develop methodologies which can be introduced 

to analyze such signals. 

In modern times such concepts have been proven to be useful in modern 

radar system analysis. Conventionally, radar has dealt with pure cw signals which 

are either frequency modulated or turned off and on to generate pulses. However, 

there are other radar systems which deal with wideband pulses. Hence in 

understanding how such radar systems work it is necessary to understand time- 

frequency representation of waveforms and how they are characterized and 

analyzed. One of the objectives of this study is to look at various methodologies 

for analyzing broadband signals, particularly those in which the instantaneous 

frequency changes with time.   Secondly, it is necessary to design wave shapes 
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and/or waveforms for such systems which upon transmission will enhance the 

detection performance over conventional narrowband systems. 

In this study, we look at the classical Fourier transforms, Gabor transforms 

and the wavelet transforms which have been utilized for characterizing waveforms 

whose frequency content changes with time. One of the main features that 

distinguishes the three transforms is the choice of the window function. The 

purpose of the window function is to localize the information about the signal in 

both space and time. To this end, the T-pulse technique provides a very flexible 

window function which can be generated a - priori utilizing computerized 

optimization techniques. Once such methodologies are known, one can then utilize 

special pulse shapes to enhance detection performance. Hence waveform shaping 

and analysis of waveshapes is the main theme of this paper. 

The second part of this paper describes various pulse shaping techniques 

like the E-pulse and the K-pulse and their philosophies. The newly developed T- 

pulse technique is also described and shown how flexible it is. Since the T-pulse 

is designed through a process of numerical optimization, various constraints like 

no DC value or zero intersymbol interference can be added to the computer aided 

waveform design technique without any difficulty. A user-oriented computer 

program is presented in the appendix to generate T-pulses with desired properties. 
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&       MATHEMATICAL BACKGROUND 

This section summarizes the various analytical tools that perform time- 

frequency analysis. The three techniques that are most popular are the Fourier 

Transform, the Gabor Transform and the Wavelet Transform. These techniques 

are presented both from a continuous and a discrete time signal point of view. 

The basic difference that distinguishes the three transform techniques as a 

time-frequency localization tool is the choice of a "window function". The "window 

function" is essentially an artifact through which we observe the data. For each 

of the three transforms the window function has certain fixed properties. Thereby, 

each of these analysis techniques has preferred domains over which their 

application provides good results. One of the objectives of this report is to 

generalize these analysis techniques and describe a window function that is very 

flexible and can deal with a very broad class of practical target identification 

problems. The continuous time signal transform techniques are presented first, 

followed by the discrete version. 

±       CONTINUOUS TRANSFORMS 

4.A    FOURIER TRANSFORM 

The classical Fourier Transform technique is utilized to find the frequency 

content of a particular waveshape p(t) which has occurred just once and has 

existed for a time interval [0,T] and is non-existent for any other times. It is well 

known that the frequency content of such a signal p(t) is given by the Fourier 
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transform P(co) so that 

T 
P(G>) = f p(t) e^1 dt = f p(t) e"^ dt (4-D 

-oo 0 

(4.1) can be interpreted as modulating the function p(t) by e"jat and then integrating 

it. The Fourier Transform is defined for all values of the variable t [i.e. from -°° 

< t < °o], whereas the Fourier series of the function p(t) is defined to be periodic. 

That is, p(t) repeats itself after every period (e.g.; 2K). Hence pF(t), the Fourier 

series of p(t), is defined as 

Pp(0   =    £      Cn •** (4'2) 

n=-oo 

where 

cn = J_  f p(t)e-Jntdt (4.3) 
0 

So for a Fourier series, the function p(t) is decomposed into a sum of orthogonal 

functions cn e?at. Observe that the orthogonal functions into which p(t) is 

decomposed in (4.2) is generated by integer dilations of a single function e*1. Also 

note that the function pF(t) is periodic with period 2K. In contrast, in the Fourier 

Transform, the spectrum is decomposed into noninteger dilations of the function 

ejt, as we know 
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p(t) = —   f P(o) eJQt do> (4.4) 
-00 

The problem in analyzing signals which are limited in time, i.e. they exist over a 

finite time window and are zero elsewhere, by Fourier Transform techniques, is 

that such functions can not simultaneously be bandlimited. Hence, to represent 

signals p(t) which exist for 0 < t < T, the Fourier Transform is generally not the 

best way to characterize such signals. However, a short time Fourier Transform 

has been utilized to analyze such signals in the time-frequency plane. 

By its very definition, the Fourier transformation uses the entire signal and 

permits analysis of only the frequency distribution of energy of the signal as a 

whole [1]. To solve this problem, many who do spectral analysis have taken a 

piecewise approach. The signal is broken up into contiguous pieces and each piece 

is separately Fourier transformed. The resulting family of Fourier transformations 

is then treated as if it were the basis for a joint time-frequency energy distribution 

[1-4]. 

In the short time Fourier transform, the function p(t) is multiplied by a 

window function w(t) and the Fourier transform is calculated. The window 

function is then shifted in time and the Fourier transform of the product is 

computed again. So for a fixed shift ß of the window w(t), the window captures the 

features of the signal p(t) around ß. The window helps to localize the time domain 

data, before obtaining the frequency domain information. Hence, the short time 
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Fourier transform is given by 

P
STFT(") =  / P(t) w(t-ß) e** dt (4-8) 

and when w(t)=l for all t, one obtains the classical Fourier Transform. 

The problem here is that as the window function gets narrower, the 

localization information in the frequency domain is compromised. In other words, 

as the frequency domain localization gets narrower, the window gets wider, so that 

localization information in the time domain gets compromised due to the 

uncertainty principle [The uncertainty in time At and the uncertainty in angular 

frequency Aco are related by Aco • At > 0.5]. 

Since the requirements in the time localization and frequency resolution are 

conflicting, one has to make some judicious choices. The best window w(t) depends 

on what is the meaning of the term "best"? 

The above problem has solutions only under certain conditions. For 

example, if we require the function w(t) to be symmetric and that its energy be 

confined to certain band |co| < B, then we know the optimum function w(t) is given 

by the prolate spheroidal functions. Other criteria such as signal-to-noise ratio can 

also be utilized in designing the function w(t) or utilizing other "criteria for best" 

[4-7]. 

To obtain the original signal back from the short time Fourier Transform, 

we observe [4] 
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P(t) w(t-ß) = j-  / Psirr ((o,ß) e'üt do (4.9) 
-00 

If we set ß = t, then 

P(t) w(0) = -L  | PynT ((l),t) ei* d(i) (4.10) 
2TI 

—00 

So that we can recover the original signal p(t) for all t as long as w(0)*0. If 

w(0)=0, then choose some value of ß. Observe that it is not necessary to know w(t) 

for all t, in order to recover p(t) from its short time Fourier transform. 

Alternately, one can also recover p(t) from (4.9) by multiplying both sides by 

w(t-ß) and integrating with respect to ß. The overbar denotes complex conjugate. 

Then, 

/   / Psll7r(a),ß)w(t-ß)e^d(odß 

P(t) = J- • ^^  (4.11) 
271 oo 

/   |w(t-ß)|2dß 
-oo 

oo 

This of course assumes   f   |w(t-ß) I2 dß is finite. However, if the window function 
—00 

is infinite, then one can multiply both sides of (4.9) by another sequence r(t), such 
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that 

I ?(t-ß) w(t-ß) dß = 1 (4.12) 
-00 

An attempt was made by Gabor [8] in 1946 to develop a methodology where 

a function can be simultaneously localized in time and frequency. If that is 

possible, then the "frequency content" of any signal can easily be obtained by 

observing the response in certain narrow frequency bands. Hence it is possible to 

track the instantaneous frequency of a signal. 

In order to simplify the presentation, we introduce the generalized form of 

Parseval's theorem for two functions p(t) and q(t) and their Fourier transforms 

P(o&) and Q(co).  So that 

00 00 

<p;q> =   f p(t) q(t) dt = —   f P(o) Q(co) do = — <P;Q>     (4-13) 
J 2TT   

J 2rc 
-00 -00 

where <•;•> denotes the inner product between two functions and the overbar 

denotes the complex conjugate.  Note that if 

q(t) = Ö(t)   and   Q(u) = ejut (4-14) 

then (4.13) divided by (4.14) defines the inverse transform and if 

Q(u) = 2*0 (co)   and   q(t) = ejut <4-15) 

then (4.15) when substituted in (4.13) defines the forward Fourier transform. 
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In the next section we see how Gabor through the choice of certain window 

functions made possible not only to localize a signal in the time domain, but was 

also able to localize its frequency content in a narrow frequency band. 

4.B     GABOR TRANSFORM [1, 8, 9] 

The objective of the Gabor transform is to expand p(t) into a set of functions 

that are simultaneously limited in both time and frequency. This is in contrast to 

Fourier transform where, the expansion is done by functions e"JCDt which are not 

time limited, but highly localized in frequency. 

Even though from a strict mathematical point of view, it is not possible to 

localize a function simultaneously both in the time and frequency domain, however 

this can be achieved from a practical stand point. Let us illustrate Jiis considering 

a family of functions q(t) such that a member q^t) is defined as 

q^t) = _J_ e"<« (4-16) 
2\fHa 

Then the product p(t) q^t) can be localized in time from a practical standpoint if 

a > 0. This is because, beyond a certain value t=Tp the function q^t) practically 

decays down to zero and so will the product p(t) q^t). Next, we introduce another 

parameter ß, so that the function wa ß(t) (which is real) is defined by 
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wa.P(l) = w«(t"ß) = -7= e   4s   = q..p(t) (4-17) 

Hence ß is a shift parameter and now the functions waß(t) can span any function 

p(t) for all possible choices of the parameter a and ß. Now if we look at the 

Fourier transform of the product of the two functions p(t) waß(t), which is called 

the Gabor transform [Gaß(co)], then 

CO 

G..p(^) = / P(t)w0>p(t) e*" dt (4.18) 

Note that 

/ wop(t) dp = / wa(t-ß)dß = 1 (4.19) 

Hence integrating (4.18) with respect to ß and substituting (4.19) one obtains 

/ Gap(o))dß =  / p(t)e-Jutdt =P(co) (4.20) 

So the Fourier transform of the function p(t), given by P(co) results by integrating 

the Gabor transform with respect to all possible delay parameters ß. 
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Since <p;q> = JL <P;Q> and if q(t) = w8>p(t) ejwt. then 
27t 

/ p(t) q(t) dt =  / p(t)wa p(t) e** dt = Ga.p(o>) = ±  f P(0) Q(Q) dO  (4.21) 
-00 —00 -00 

and since waß(t) is real 

00 <£$£ 
Q(G) =  / ei««w8(P(t) e** dt =  /  -L_ e    4«   e*-Q» dt 

-co -oo 2^ (4.22) 

= e-j(-u*Q)2a e-(-«+Q)P 

Since   f »-PV±qx ,W_O<I
2
/4P

2
 . v^ | e-*v** dx=e^2 • **. 

Ga.p(u) = — / p(fi) e+J(Q-u)P e-(Q-ü)2s dQ = — / P(Q) e"<Q-"^ eJQp dQ 
-00 

00 

/ P(Q) w1/(4a) (Q-o>) e™ dQ 
««      -00 

(4.23) 

It is clear from (4.23) that the Gabor transform also localizes the Fourier transform 

P(ß) of p(t) exactly, to give its local spectral information.  Hence, not only is the 

function p(t) localized in time by the function waß(t), but also its transform P(co) is 

localized in frequency by the function Wy(4a)ß(ß). The width of the window function 
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in time domain, \, is then obtained as 

\ = lw. 
/  t2 w8

2(t) dt 

1/2 

I 
(4.24) 

We have 

and 

llwjl2 =  / 
47ta 

e 2S dt = 
v/8ua 

(4.25) 

/ 
t2e 2« 

4na 
dt = 

\ 

a 
8TI 

(4.26) 

Hence 

*t- 
1 -1/2 

/8iro I       h 

a 
8TI 

1/2 

and the width in the frequency domain Aco is given by 

(4.27) 

• = (A«4 V(4«) 2^ä 
(4.28) 
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So the function p(t) is localized in time at ß ± XÜL and in frequency at Q ± _L_, 

Note that 

A-A, = I (4.29) t    «      2 

So the width of the time-frequency window is unchanged for observing the 

spectrum at all frequencies. In fact it is seen that the Gabor transform is 

essentially a short time Fourier transform with the smallest time-frequency 

window. 

4.C     WAVELET TRANSFORM 

A property not possessed by the window function of the Gabor transform is 

the additional condition 

/ w.j(t) dt = 0 (4.30) 

namely, the average value of the window is zero. This property gives an extra 

degree of freedom for introducing a dilation (or scale) parameter in order to make 

the time-frequency window flexible. With this dilation parameter, the integral 

wavelet transform provides a flexible time-frequency window which automatically 

narrows when observing high frequency components and widens when studying 

low frequency components. Hence it is in tune with our auditory and visual sense 
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perceptions which at least in the first step processes signals in this fashion. This 

explains the evolution of the musical scale in the west. For example Figure 1 

shows the location of the notes c and g in the major diatonic scale for several 

octaves [4]. On a lograthimic scale they would appear to be nearly equi-spaced. 

Thus the notes c and g become sparser and sparser as the frequency increases. 

The window function in the wavelet transform takes the form as 

w-(0 = 7R fS 

The above function is admissible provided (4.30) is satisfied. The integral wavelet 

transform of p(t) is defined by WTp 

WTp =  / p(T) wap(T) dT = -L-  / p(T) w[il&] dT (4.32) 
-00 VH      -00 a 

with a * 0. 

Then if the center of the window function w(t) is given by t* and the width 

of the window is given by &" then the function w   m is a window function with 

the center at ß + at* and width «A*. 

Note 
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Wa>p(o) = _L-  / e-^ wl rt-ß dt 
(4.33) 

a     . -jp« 

/R 
e-Jpw W(o(o) 

where W(co) is the Fourier transform of w(t). 

From Parseval's relation (4.21), the wavelet transform WTp of p is given by 

WT   = —   f  -£- P(oj) e'jpw W(ao>) du 
P 2*    -co    1^1 

(4.34) 

The window function in the frequency domain is centered at co* and has a 

2A width      " , with the exception of the multiplicative factor —?— and the phase 
a 2wh/ä| 

factor e1^. 

The wavelet transform provides local information in the frequency window 

Aw Aw 

a        2a '   a        2a 
(4.35) 

Note that in the wavelet type of analysis, if (o* of W(aco) is assumed to be positive, 

then the ratio 
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center   frequency _  o)*/g  _   o* 
bandwidth ?A

W
        ?A

W 
(4.36) 

is independent of the scaling factor a. The class of bandpass filters represented 

by (4.35) as a function of a has the property (4.36) and are called constant Q- 

filters. This type of processing is done by the human ear at least in the first stage 

of signal detection [4]. 

From the Wavelet transform given by (4.32) or (4.34), the original function 

can be recovered utilizing 

p(t) = J-  /   / WTp wa>p(a) *± dß (4-37) 
W     -OO    -00 

where, a > 0 

OO 

c  =  r  |W(a»|2 do (4i38) 
w      J I co I 

Hence (4.38) implies only certain classes of window functions can be utilized in the 

wavelet transform, namely those whose responses decay at least as fast as       * 

.1" as co -» co. 

The convergence of the integral in (4.37) is defined in a weak sense [2], i.e. 

taking the inner product of both sides of (4.37) with any function g(x) e S£2 and 

commuting the inner product with the integral over oc,ß in the right hand side 
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leads to the true formula. Since for any absolutely integrable function W(co) - the 

Fourier transform of w(t) - is continuous, (4.0) can only be satisfied provided 

W(0) = 0 
00 

or equivalently   f w(x) dx = 0  i-e« the wavelet w(x) has no DC value. 
—00 

In the continuous domain, all three techniques (Fourier, Gabor, Wavelet) 

have good theoretical properties. The question is what happens in the discrete 

domain. Do all these properties carry over to the discrete domain or do certain 

additional constraints need to be imposed. 

iL       DISCRETE TRANSFORMS 

5.A    DISCRETE SHORT TIME FOURIER TRANSFORM (DSTFT) 

The discrete representation of (4.8) is given by [4] 

00 

Wr^P) =   E    P(n> W<n-P) z"n (5,1) 

n=-oo 

where 

z = e*» (5.2) 

where p(n) are the sampled versions of p(t) and ß is an integer and so the window 

values are sampled at w(n-ß). The inverse DSTFT of PDsrFT is given by 
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2% 

p(n) w(n-P) = ^-  / PDOTr(z,P) zndo (5.3) 

If we set ß=n, then 

2* 

P(n) 
2itw(0) 

'DSTPT (z,n) z11 do) (5.4) 

Hence one can recover p(n) as long as w(o)*0. If w(0)=0 then one chooses a value 

of ß, for which w(m)=w(n-ß)*0 and the procedure continues. 

An alternative representation can be made, provided it is such that 

E lw(m>l2 = 1 (5.5) 

For (5.4), p(n) is recovered by 

P(n) - ± f 
1%    (       CO 

E    PD*rFr (^ w(n-m) 
m=-oo 

zndco (5.6) 

It is interesting to note that the inversion formula is not unique. For example if 

z0 is a zero of the z-transform of the conjugate of the window function, i.e. z0is a 

zero of the polynomial 

W^z) =   E    w(k) z"k (5.7) 

then if we replace PDSrFT (z, m) in (5.6) by PDSrFT (z, m) + z0
n 
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then (5.6) is still satisfied.    This is in contrast to the conventional Fourier 

transform, which provides a unique inverse. 

5.B     DISCRETE GABOR TRANSFORM 

In the discrete Gabor transform, the objective is to represent the signal p(t), 

by a series as 

00 00 

p(t) - p(t) = E   E aw t«(t) (5-8) 

k=-oo  {=-00 

where 

tkl(t) = e"2(t-tk)2 eJ(2,tf<tk) (5-9) 

Gabor presented a heuristic argument for iteratively estimating the coefficients a^ 

so as to obtain an approximation ß(t). However, no justification of this process was 

given [5]. 

Martin Bastiaans [7] used a different set of expansions to 

gu(t). A* .-**» £= .*» (5.10) 

show that the representation (5.9) actually forms a complete set and that the 

representation error p(t) - ß(t) goes to zero for a sufficiently large number of basis 
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functions. The important difference between the representation (5.9) and (5.10) is 

the choice 

tk = kT (5.11) 

and 

f. = - (5.12) i      T 

where T is the sampling interval. 

One of the objectives of this representation is to look at the cell centered at 

the point (t^; f,) in the time frequency plane and how its surrounding regions are 

distributed.  The main objectives of the representation (5.8) is that if the signal 

within the window NT-— <;t<;NT + — contains a pure sinusoid of frequency 
2 2 

f0, then we would hope that the expression 

NT+T/2 
P(NT,f,T) =      f     p(t) e"i2,rft dt (5.13) 

NT-T/2 

and that   |P(NT,f,T)|2 would have a significant magnitude primarily near f0. 

However, if one looks at the representation of p(t) given by (5.8) and (5.9), then it 

is not at all clear that there would not be any leakage from nearby cells where k 

= N+l, N+2 or N-l, N-2 and so on, to  |P(NT,f,T)|2-   Indeed the leakage from 

neighboring cells can produce erroneous interpretations as described in [6]. This 
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is because neither (5.9) nor (5.10) has a finite support in the time domain. They 

extend for all times. One would expect the signals centered around the cell NT to 

contribute to P(NT, t, f) if and only if the time domain support in the 

representation in (5.8) is finite. Otherwise the results are not relevant. This is 

why Lerner [8] extended the representation in (5.10) to have the basis signals of 

the general form: 

vu(t) = v(t-kT)   e &E* (5.14) 

v(t) being a "convenient" finite energy function whose energy is concentrated near 

t=0 and whose energy spectrum |V(Q)|
2
 is concentrated near co=0. This was later 

modified by Roach [6] who demonstrated that unless the function v(t) is of finite 

support in the time domain, representation of the form (5.8) produces an energy 

spectrum   |P(NT,f,T)|2  which has no clear relationship to the signal in the 

corresponding interval in time. Note that this precludes the Gaussian function or 

the prolate spheroidal functions as possible window functions since they are of 

infinite duration! 

It has been shown that for a proper time-frequency representation, the 

expansion must be of the form [9] 

w> - E  E °ki vo (5.i5) 
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where 

*u(t) = 
v/^Fg   eJ"' ;   |t-tj s T/2 (g lg) 

0 ;   |t-tk| > T/2 

The requirement of the window function w(t) is that W(o)) must have an infinite 

number of equally spaced zeros. Under that condition 

VT/2 

cw =     /     P(t) ^Fg e-J2"Q * dt (5.17) 

VT/2 

where Q is the frequency spacing. The interesting point in (5.17) is that the 

coefficient for a given segment in time is completely independent of the signal 

outside the kth cell since the coefficients in different time segments are 

orthonormal, the total energy in the signal is then the sum of all the individual 

coefficients squared. 

It is interesting to observe that (5.16) and (5.17) have close resemblance to 

the windowed Fourier transform presented in the earlier section, when the window 

function becomes a rectangular window. However, any window function which 

results from the convolution of any rectangular pulse with a symmetric window 

function will provide the mathematical requirements for w(t) in (5.16) and (5.17). 
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5.C     DISCRETE WAVELET TRANSFORM 

If in the continuous wavelet transform, one uses integer values for some 

integers k,n in (4.32) and assumes ß = 2k nT (one can assume T=l, without loss of 

generality for the discrete case) and a = 2k then the discrete wavelet transform of 

p(t) is given by [4] 

WTpGcn) =  | p(t) 2"k/2 w(2"k t-nT)dt (5-18) 
-00 

The inverse transform is given by 

00 00 

p(t) =   £      £    WTp(M) 2-W w(2"kt-nT) 
k= -•» n= -oo 

(5.19) 

under the condition that the window functions 

*..*© - wi»0) - 2"W w<2"k l-nT) (5-20) 

are orthonormal, i.e., 

00 

/ wi(l) wM(t) dt = 5(k-p) Ö(n-q) (5-21) 
-00 

The shift integers n are chosen in such a way that w(2"k t-nT) covers the whole line 

for all values oft. The wavelet transform thus separates the "object" into different 

components in its transform domain and studies each component with a resolution 

matched to its scale. 

The wavelet series amounts to expanding the function p(t) in terms of 
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wavelets wk>n(t), so that 

P(t)=    E     C^w^Ct) (5-22) 
k^i=-oo 

If we further assume that the wavelets wkn(x) are orthogonal [i.e. (5.21) holds], 

then 

uj 

C^ = <V;^> (5.23) 

By comparing (5.18) and (5.23) it is apparent that the (k,n)th wavelet coefficient of 

f is given by the integral wavelet transform of p if the same orthogonal wavelets 

are used in both the integral wavelet transform and in the wavelet series. So the 

wavelet series provides an approximation for p which is not necessarily the least 

squares (S£2) orthogonal projection that a Fourier Series provides. 

Also, the wavelets provide an unconditional basis for ä? for 1 < i < <*>. Since 

9P1 has no unconditional bases, wavelets cannot do the impossible but still they can 

do a better job than Fourier Expansion by displaying no Gibb's phenomenon for 

approximating functions that are discontinuous. However if the wavelets used in 

the approximation are not discontinuous like the Haar wavelets (or Walsh 

functions) but utilizes continuous functions instead then the Gibb's phenomenon 

is visible in the wavelet approximation. The problem now at hand is are there any 

numerically stable algorithms to compute the wavelet coefficients Ckn in (5.23)? 

198 



Specifically in real life pis not a given function but is a sampled function. 

Computing the integrals of <p; wkn> then requires a quadrature formula. For the 

smallest value of k, often referred to by the scale parameter, i.e. most negative k, 

this will not involve many samples of p and one can do the computation quickly. 

For large scales, however, one faces large integrals, which might considerably slow 

down the computation of the wavelet transform of any given function. Especially 

for on-line implementations, one should avoid having to compute these long 

integrals. One way out is the technique used in multirate/multiresolution analysis, 

by introducing an auxiliary function <|>(x), so that [2] 

00 

Ö»   =     E      dm *(X-m) (5'24) 

m=-oo 

and 

00 

♦GO =   £    cm d>(2x-m) (5-25) 
m=-» 

where in each case only a finite number of coefficients c^ and d,,, are different from 

zero. 

Here § does not have integral zero but y does, and <|) is normalized such that 

/ 4>(x)dx=l (5.26) 
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and we define <t>kn even though <)> is not a wavelet, i.e. 

*k* = 2'm 4>(2-kx-n) (5.27) 

So 

Since <{>(x) satisfies an dilation equation in (12j, <Kx) is called the scaling function. 

<p;wk>n> -- E^s<p;*k,„+m> (5-28) 

m=-«> 

So the problem of finding the wavelet coefficient is to that of computing <p; <|)jk>. 

Note 

00 

<K*1»>   =     E      Cm <P;*k-l;2n+m> (5-29) 

m=-<» 

so that <p; <j>k n> can be computed recursively starting from the smallest scale (most 

negative k) to the largest. The advantage of this procedure is that it is 

numerically robust - namely - even though the wavelet coefficients Ck n in (5.23) are 

computed with low precision - say with a couple of bits - one can still reproduce p 

with comparatively much higher precision [2]. 

In summary, what we have done is as follows: Consider p(t) as a function 

of time. We have taken the spectrum of p(t) and have separated the spectrum into 

octaves of widths Ao\ that is, frequency band a) has been divided into [2k7i to 2k+17i] 

for all values of k, and now we define wavelets in each frequency bin AcOk and 

approximate p(t) by it.  If we choose 
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<Kt) = ^ (5.30) 
TCt 

i|f(t) = 2cJ)(2t) - (j)(t) (5-31) 

then the wavelet expansion of p(t) with respect to \|/ is 

w^) = 2k/2 #(2kt-n)    (with  T=l) (5.32) 

P(0 = E PkW = E ^ yta(t) (5.33) 

The functions wkn(t) are orthonormal because their bandwidths are non 

overlapping, namely for a fixed k, pk(a)), has the bandwidth Ao^ which is [2krc, 

2k+17i]. So the wavelet expansion of a function is complete in the sense that it 

makes an approximation by orthogonal functions which have non overlapping 

bandwidth. 

As concluded by Vaidyanathan [4], even though the continuous wavelet 

transform has a wider scope with deeper mathematical issues, the discrete wavelet 

transform is quite simple and can be explained in terms of basic filter theory. 

Even before the development of wavelets, nonuniform filter banks have been used 

in speech processing by [12, 13]. The motivation was that the nonuniform 

bandwidths could be used to exploit the nonuniform frequency resolution of the 

human ear [14]. So if the wavelet application is already in the digital domain, it 

is really not necessary to understand the deeper results of the scaling function <{)(t) 

and wavelets w(t). In this case, all we need to focus on is the dilation and the shift 
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principle to generate a complete basis. 

Moreover, the question of how adequately the DC value of the function p is 

approximated by the wavelet series is a problem since the wavelets do not have 

any DC value. However, in numerical analysis, one may be required to expand a 

function p in a basis which should have a DC value! 

6K        DIFFERENT PULSE SHAPING TECHNIQUES 

There are various pulse shaping techniques for radar target identification 

such as example, the K-pulse and E-pulse. The differences between the T-pulse 

and the K-pulse and E-pulse are delineated next. 

6.A     K-pulse [15-17] 

The objective behind the K-pulse is as follows. Consider a linear system 

with the transfer function H(s), defined by 

H(s) = Ä (6.1) 
D(s) 

where N(s) is a numerator polynomial and D(s) is the denominator polynomial. 

Both are assumed to have finite degrees, namely 

N(s) = a0 + ats + a^2   ...      +ans
n (6-2) 
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D(s) = b0 + b,s + b2s
2   ...      +bmsm (6.3) 

In general, the impulse response h(t) derived from H(s) would be causal (i.e. 

h(t) = 0 for t<0) and would exist up to t -> <». If the transfer function H(s) has 

poles (i.e. b{ * 0), then the impulse response cannot be of finite duration. 

However, suppose that the system H(s) is excited by a pulse d(t), where d(t) 

is the inverse transform of D(s). So, since D(s) is an all-zero system, the waveform 

is time limited. If the waveform d(t) excites H(s), this waveform will cancel the 

response due to the poles of the target and the target return will be due to N(s). 

In summary, the basic philosophy of the K-pulse is to excite a target by a 

waveshape d(t) which is the inverse transform of the denominator polynomial D(s) 

only. This in turn will produce a target return n(t) due to N(s) which will be of 

finite duration. Hence, if the K-pulse of a target is properly designed, then the 

response ofthat target due to the K-pulse will be of finite duration whereas if the 

K-pulse is not matched to the target then the response of the target due to the K- 

pulse will continue for a long time. The crux of the problem in engineering the K- 

pulse lies in determining D(s) and then synthesizing the pulse d(t) which will be 

the characteristic response of that target only. 

6.B     E-Pulse [18,19] 

There is another waveform design technique that has been developed for 

radar target discrimination. This is called the E-pulse technique. In the E-pulse, 
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the objective is to excite the target with the mirror image of the impulse response. 

So if the impulse response of the target is h(t), then the excitation waveform has 

to be h(-t). Under this circumstance, this response corresponds to that of a 

matched filter. It is well known that the output of a matched filter produces a 

sharp peak in the response maximizing the instantaneous energy from the target 

when the waveform is matched to it. The E-pulse is also related to Prongs method 

[20]. 

L       DEVELOPMENT OF THE T-PULSE 

In both the K-pulse and the E-pulse approaches one has to know what the 

target response is before the waveshapes can be designed. Without an apriori 

knowledge of the target, it is difficult to proceed in the design of K-pulses and E- 

pulses. In the T-pulse approach, the waveshape design is independent of the 

target. In this case, the objective is to produce a time limited waveform, whose 

spectral energy would be concentrated in a narrow band. 

Theoretically, if a waveform is of finite duration in time, it cannot 

simultaneously be bandlimited [21-23]. Hence, the objective is to design a time 

domain waveform whose 99.9% of the energy would be concentrated in the narrow 

spectral band Af. We will limit our discussion to low pass signals since any 

bandpass signals can be represented by a modulated low pass signal. The problem 

of finding a waveshape for construction of a discrete finite duration signal whose 
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spectral energy is maximized in a given band has been outlined in [24]. The 

constructed signal is also orthogonal to the block shifted version of itself. In this 

presentation, an additional constraint is put on the waveshape in which the 

waveform has no DC value. This is because if a particular waveshape needs to be 

transmitted through an antenna then this constraint is useful, as antennas cannot 

radiate DC. 

The construction of the T-pulse is carried out in the discrete domain. Let 

us assume a discrete signal sequence f(m), which is defined for m=0,l,2,..., Nm-1 

and is identically zero outside these Nm values. Let us assume there are Nfl 

samples in one baud time (in an approximate way, the baud time is the time 

duration between zero crossings of a signal), then the total number of baud times 

Ncis, 

Nc = NJN, (7.D 

The DFT of the signal f(m) is given by 

N -1 

F(k) = —   Y,    f(m) exP 
JK m=0 

' -j27tkm>| (7.2) 

for k = 0, 1, .... Nk-1. 

So in the frequency domain, Nk is the total number of samples of the DFT 

sequence F(k). In the frequency domain, if we assume there are Nr samples per 

baud rate (inverse of baud time) then 
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Nk = Nr • Ns (7.3) 

and increasing Nr increases the resolution in the frequency domain. 

In the T-pulse construction, the objective is to maximize the inband energy 

within the set § = {-Nb < k < Nb}. Or equivalently, it minimizes the energy outside 

the Nb samples. In addition, the waveshape has to be orthogonal with its shifted 

version and this will minimize the intersymbol interference. This implies that 

Nn-1 
£    f(m) fOn+kN,) - ö(k) = 0 

m=0 

for    k=0, 1, ..., Nc-1 

where 5(k) is the impulse function. This guarantees that if the waveform is shifted 

by a baud time or its multiples, then the waveshape is orthogonal to itself. Note 

that when k=0, it is the square of the function itself and no constraint need to be 

put on that. In addition, we need to put in a DC constraint, i.e. the waveshape 

should have no DC component. Hence 

Nm-1 
±   £    f (m) = 0 
w» m=0 

So the cost function Jc, that will be minimized is 

(7.5) 

J A w8 E^ + wm em +   £    „k vp 

N.-l 
wv e; 

p=0 

2 +   Y-   w. e
2 (7.6) 

where we, wm and wk are various weights to the errors Eout, em, ek.  The weights 
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should be adjusted in a search procedure that has been designed to minimize J. 

In addition, 

Eom =   out   of  band   energy   =   E - Efa 

Nm-1 Nb 

£      |f(m)|2   -    £     ITOI 
m=0 k=-Nfc 

(7.7) 

and 

emA Y: 
f<m> 

m=0 
(7.8) 

Nm-1 
ep A   £    f(m) fCm+pN^   for  p=l, 2, ..., Nc-1 

m=0 

(7.9) 

Equivalently, 

J=w_ 
Nm-1 m Nm-lNm-l smi 27t(n-m) 

E Nr-^- E  E f<m>f(n>- 
m=0 k  m=0 n=0 

N, 
(       l\ 
Nb+- 

v b  2, 

sin^7t (n-m)l 
N,.   I (7.10) 

Ne-1 

E 
p=0 

+ V   wt £    f(m) fCm+pN^-ÖO)) 
m=0 

w_ 

N 

Nm-1 m 

E f<m> 
m=0 
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In summary, the following observations are of importance. 

1) Note that the objective is to minimize the cost function J, such that Eout is 

minimum with em=0, and ep=0 for p=0, 1, ..., Ne-1. 

2) The weights we, wm and wp (p=0, 1, .... Nc-1) should be adjusted in a search 

procedure to achieve the above goal. 

The minimization process can be outlined as follows: 

Step 1: Choose an initial guess for f(m) and initial guess for the weights we, 

wm and wk, k=0, ..., Nc-1. 

Step 2: Compute the gradient of the functionalJ, with respect to f(m). This 

is given by 

8J 
3f(m) 

=2w. 
Nm-1 

E   f<m> 
m=0 

Nm-1       sa\ 
l-^-E   f(n). 

Nk  11=0 

27tfr-m> (N.+I) 
N. 

sin 
7t(n-m) 

N„ 

N.-1 

"2E 
p=0 

w. 
Nm"l 
£    f(m)f(m+pNg)-Ö(p) 

m=0 

Nn-1 
£    {f(m)+f(m+PNs)} 

m=0 

\   (7.11) 

2w N-_1 

+—= £ f(m) 

N; m=0 
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assuming f(m) is real. 

Next an optimum step length to update the signal sequence f(m) is chosen 

through one dimensional searches. 

Step 3: If the norm of the previous gradient vector is not small enough, go to 

step 2. Otherwise see whether the orthogonality errors |ep| for p=l, 2,..., Nc-1 are 

small enough.  If the errors are small enough stop the process.  If the errors are 

still considered to be large, increase each wp (k=l, 2 Nc-1) by a factor and then 

go to step 2. 

Note that throughout the process, we is the fixed nonzero value, since the 

absolute value of the total energy is not important. However, we can be increased 

during the process if the inband energy to generate the T-pulse is unexpectedly 

low. This may happen as the cost function may have more than one local minima 

and increasing we can make one jump out of an undesired local minimum. 

*L       PROGRAM DESCRIPTION FOR T-PULSE GENERATION 

This section describes a user oriented computer program to generate a T- 

pulse. The inputs required are the number of sample points that will constitute 

the waveform, the number of baud times and the percentage bandwidth over which 

the energy is concentrated. The description of the program along with sample 

output is given in the Appendix. This designs the baseband signal. To shift the 

energy spectrum into another band, a narrowband cw signal is amplitude 
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modulated by the baseband T-pulse. Hence the final waveform has a very 

narrowband and can easily be transmitted by conventional antennas. Since the 

effective bandwidth of the T-pulse is small, the problem of the phase center of the 

antenna changing and producing a distorted wideband pulse, thus does not exist. 

At the end of the computer program description, an example is presented 

showing the synthesized T-pulse in the time domain in Figure 2 and its spectra in 

Figure 3. 

The T-pulse was designed for ^^=4 and Nband=130 and for 100 samples. 

Note that the T-pulse has zero mean and is orthogonal to its shifted versions. The 

second figure shows the spectra of the T-pulse. It is seen that the bandwidth of 

the T-pulse is 13 units as seen from the FFT. 

^       AN APPLICATION OF THE T-PULSE 

In this section, an example is presented to illustrate the utility of the T- 

pulse for target identification. 

Consider the following experiment. Take a 2m long thin wire dipole of 

radius 0.01m. Consider that a narrowband Gaussian pulse excites this dipole from 

the broadside direction. The Gaussian pulse is of the form A exp[(t-t0)
2], where t0 

= 2.5 light meters (lm). [A light meter is defined as the time taken by light to 

travel 1 meter. Hence 1 light meter = 3.33 nanosec]. Since the data will be 

discrete, assume the sampling time T to be 0.5 nsec = 0.15 light meter.   Now 
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assume that the derivative of the Gaussian pulse excites the dipole from the 

broadside direction [25]. The derivative of the Gaussian pulse is shown in Figure 

4. Observe that the exciting pulse approaches zero after t = 6.0 lm. Next compute 

the current at the center of the dipole utilizing the conjugate gradient method [24]. 

Here the hyperbolic wave equation is transformed to a boundary value problem 

which is solved to a prespecified degree of accuracy, so that the current induced at 

the center of wire is known very accurately. This is achieved by minimizing the 

residual over a space and time grid. The synthesized current response at the 

center of the thin wire is shown in Figure 5. Figure 6 shows the DFT (Discrete 

Fourier Transform) amplitude spectrum of the first 128 points (samples) of the 

exciting pulse of Figure 4. It is seen that the input has a wide spectrum, 

extending to a frequency index of 40. In Figure 7, the amplitude spectrum of the 

tail of the induced current, i.e. for t > 6 lm, is presented. From Figure 7, we can 

observe four resonances for the wire, which are located at the frequency indices 

k=4, 13, 24 and 26 or f = 0.0625, 0.203, 0.375 and 0.406 (in GHz). Note that the 

frequency f is related to the frequency index k by f = k/(128T) for a 128 - point 

DFT. It is important to note that for an ideal 2-m dipole the resonant frequencies 

should be f = 0.075, 0.225, 0.375, ... these are computed from fj = ic/(2L), where c 

is the velocity of light, L is the length of the dipole (= 2m) and i is an odd integer. 

The first three resonant frequencies detected in Figure 7 appear to approximately 

match the first three ideal frequencies. The fourth resonant frequency is perhaps 

due to the vector addition of the infinite number of poles located in the complex 
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plane. This fourth resonant frequency is not due to computational error involved 

in the computer codes. This variable has been eliminated by solving the wave 

equation in an iterative fashion by minimizing the error over a time-space grid and 

thereby obtaining the solution to a high degree of accuracy (~ 10s) [24]. 

The objective of this example is the following: It is possible to excite the 

resonances at k=24 and k=26 without exciting the resonances at k=13 and 5. Since 

the resonance at k=13 is approximately 20 dB below the fundamental and the 

resonances at k=24 and k=26 are 33 dB below the first resonance [as per Figure 

7], it is important that the first two resonances not be excited if we want to "zoom 

in" at k=24 and k=26. To this end the T-pulse is designed. A baseband T-pulse 

is designed as shown in Figure 8 utilizing the algorithm presented in the previous 

section. Figure 8 is a baseband T-pulse of duration D = 127, T = 63.5 nsec = 19.05 

lm, and with in-band energy of 99.995% contoured within the bandwidth of 2/64 

GHz. The DFT amplitude of the baseband signal is shown in Figure 9. It is seen 

that the spectrum drops to 40 dB in a frequency index of 2 units. Now if we want 

to translate the spectrum to k=24, we simply amplitude modulate a sine function 

of k=25 by the baseband T-pulse. This produces the T-pulse of Figure 10. The 

amplitude spectrum of the modulated T-pulse is shown in Figure 11. Observe that 

the amplitude spectrum is 70 dB down at k=13 and about 80 dB down at k=5. As 

one sees, the sidelobes in the spectrum are almost 50 dB from the main peak and 

half width of the main lobe is about two times the reciprocal of 128T. Hence, 

through this T-pulse one can excite the higher order resonances without exciting 
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the dominant resonances. 

At this point, one might ask, why not use a cw signal, since basically we are 

exciting the target with an essentially monochromatic signal. The problem is that 

from a practical standpoint, the pulse that one has to generate cannot be of infinite 

duration. If the signal were of infinite duration then it would truly be cw. We 

have to gate the cw signal - which implies that the carrier frequency is windowed. 

If we use a conventional windowing technique like rectangular, Bartlett 

(triangular), Hanning, Hamming or Blackman it will be impossible to obtain a 

spectrum like that of Figure 9. Figure 12 shows the spectrum of conventional 

window functions. Comparing Figures 11 and 12 it is clear that with conventional 

windows it is not possible to obtain such a low sidelobe. 

We now let the optimal modulated T-pulse shown in Figures 8 and 9 (which 

are considered to be the derivatives of the impinging electric field pulses) excite the 

dipole. Figure 13 shows the current response produced by the pulse with center 

frequency k=25. As one observes, after the exciting pulse dies nut, i.e. for t > 19.2 

light-meters, the current has a strong tail, which indicates that the preselected 

resonant frequency (k=25) is close to some actual resonant frequency of the target. 

The other interesting feature to note is that the target has two resonances. This 

interesting modulation phenomenon in the tail of the current of Figure 13 is 

clearly explained by Figure 14 which shows the DFT amplitude spectrum of that 

tail. The two dominant frequencies k=24 and k=26 in the tail of the current 

produce the beat phenomenon since they are within the passband of the incident 
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pulse as shown in Figure 11. The plots of Figure 14 also confirm the presence of 

a double resonance as shown in Figure 7. 

The strength of the T-pulse technique is now clear. Through the T-pulse it 

is possible to zoom into a narrow spectral band of the response to observe special 

artifacts which can be certain specific "fingerprints" of the target. For example in 

this case, the modulated response can be treated as a characteristic feature from 

wire-like targets. Given that, it is now possible to zoom into the response of the 

target to see if such features exist! 

The second salient feature of the T-pulse is that it is an extremely 

narrowband signal. Hence conventional transmitting and receiver systems may 

be used to carry out experiments utilizing the T-pulse. Dispersion, which is a 

great evil for broadband systems has practically no effect on the T-pulse. Hence, 

conventional narrowband antennas may be used to transmit and receive T-pulses. 

1^     HARDWARE REQUIREMENTS 

The T-pulse is an extremely narrowband pulse which can be used to 

modulate any carrier frequency. Hence the effective bandwidth of the transmit 

and receive pulses are very small. Hence any conventional off - the shelf 

equipment can be used to generate, transmit and receive T-pulses. Since the 

effective bandwidth of the pulse is extremely small, broadband antennas like log 

periodic, equiangular spirals which are highly dispersive antennas can be used 
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without any problem to process T-pulses. 

The T-pulse in the time domain can easily be constructed from single 

frequency measurements. This can be accomplished either through Cauch/s 

method [26, 28] or through Hubert Transform techniques [32]. 

1L     CONCLUSION 

The versatility of the T-pulse technique has been presented both from a 

mathematical transform point of view and also as a waveshaping technique. The 

strengths of the T-pulse technique has been delineated and an example has been 

presented to illustrate how the T-pulse technique can be actually implemented in 

practice. 
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Appendix Al: Computer Program Description 

u  
C COMPUTER PROGRAM DESCRIPTION 
C MAIN PROGRAM. 
C T-pulse with zero mean and shift orthogonality. «-«.wy*«!«« 
{* II 

C THE DIMENSION STATEMENTS SHOULD BE CHANGED FOR SIGNALS OP 
300 POINTS OR MORE THAN 10 BAUD TIME DURATIONS. 
ino uinsiuiun OI«IBBBHI 

C 300 POINTS OR MORE THAN 
C     I ! 
C IPM(4)—NSAM,NCON,NRES,NBAND; 
C B(300, 300)—MATRIX; 
C F( 300»—SIGNAL VECTOR» 

Programmed by Y.Hua. 

MORE THAN 

i- rijuu)—aniWALi VJSUTUK; 
C GJC( 300»—GRADIENT VECTOR; 
C D(10)—WEIGHT VECTOR ON ORTHOGONALITY ERRORS EXCEPT THAT D(l) 
C    WEIGHT ON THE TOTAL ENERGY DEVIATION FROM UNITY; 
<" RATE(10»—FACTORS TO INCREASE D(10); 

• -WETRHT nn iTNFnnv. 

IS THE 

C WEI—WEIGHT ON ENERGY; 
C WR—FACTOR TO INCREASE WEI; 
C WMEAN -- weight on mean; 
C WMEANR — factor to increase WMEAN; 
C ERROR—USED TO CHECK THE NORM OF GRADIENT; 
C LIMITA—LIMIT ON ITERATION A; 
C LIMITB—LIMIT ON ITERATION B; 
C AR—STEP LENGTH; 
C XJ—ENERGY PERCENTAGE WITHIN GIVEN BANDWIDTH; 
C XCON(10»—NORMALIZED ERRORS ASSOCIATED WITH ORTHOGNALITY CONSTRAINS 

c «UC--GHADXST K,XC0N(1) IS T0TAL ENERGY IN THE SAMPLE SEQUENCE' 
C NST—TOTAL NUMBER OF SAMPLES BEING CONSIDERED; 

1000 

INTEGER YES 
REAL'S B(300,300),GJC(300),F(300),XGJC,AR,XJ,XCON(10),D(10),WEI,WR 
REAL*8 ACC,XMAX,XIND 
real*8 WMEAN, WMEANR 
DIMENSION RATE(10),LIMIT(2) 
COMMON B,WEI,IPM(4),WMEAN 

INPUT IPM(4)(NSAM,NCON,NRES,NBAND) FROM TERMINAL. 
WRITE(6,1000) WRITE(6,1000) 
FORMAT(IX,1INPUT THE PARAMETERS(NSAM,NCON,NRES.NBAND)I', 

1 /,IX,'(INTEGERS ONLY! AND NCON<-10, NSAM*NCON<-300,NCON<-NRES)') 
READ(5,1010) (IPM(I),1-1,4) 
FORMAT«I) 1010 

C 
C CHECK DATA. 

write(6,1212) (ipm(i),1-1,4) 
1212  forraat(lx,'NSAM,NCON,NRES,NBAND« •,4i4,lx,la) 

CALL BMATX 
NST-IPM(1)*IPM(2) 

C 
C PROGRAM INITIALIZES F(») AS A RECTANGULAR WINDOW IN THE MIDDLE 

DO 20 I-1,NST 
20 F(I)-0. 

NST2-NST/2 
DO 21 I-l,IPM(l)/2 
F(NST2+I)-1. 

21 F(NST2-I+1)--1. 
.FLOAT(NST)/2.) F(NST2+IPM(l)/2+l)rl. IF(FLOAT(NST2J.NE. 

C   
C DESIGNER INITIALIZES F(*) THROUGH FILE DATA.DAT 
3110 WRITE(6,1110) 
1110  FORMATdX,'DO YOU WANT TO ININIALIZE THE SIGNAL F? 
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c-   
C COMPUTER PROGRAM DESCRIPTION 
C MAIN PROGRAM. 
C T-pulae wich zero mean and shift orthogonality. Proqrammed by Y.Hua. 
C     ! I 
C THE DIMENSION STATEMENTS SHOULD BE CHANGED FOR SIGNALS OF MORE THAN 
C 300 POINTS OR MORE THAN 10 BAUD TIME DURATIONS. 
C     I 1 
C IPM(4)--NSAM,NCON,NRES,NBAND; 
C B(300,300)--MATRIX; 
C F(300)—SIGNAL VECTOR; 
C GJC(300(--GRADIENT VECTOR; 
C D(10»--WEIGHT VECTOR ON ORTHOGONALITY ERRORS EXCEPT THAT D(l) IS THE 
C     WEIGHT ON THE TOTAL ENERGY DEVIATION FROM UNITY; 
C RATE(10)--FACTORS TO INCREASE D(10); 
C WEI--WEIGHT ON ENERGY; 
C WR--FACTOR TO INCREASE WEI; 
C WMEAN — weight on mean; 
C WMEANR — factor to increase WMEAN; 
C ERROR--USED TO CHECK THE NORM OF GRADIENT; 
C LIMITA--LIMIT ON ITERATION A; 
C LIMITB—LIMIT ON ITERATION B; 
C AR--STEP LENGTH; 
C XJ--ENERGY PERCENTAGE WITHIN GIVEN BANDWIDTH; 
C XCON(10)—NORMALIZED ERRORS ASSOCIATED WITH ORTHOGNALITY CONSTRAINS 
C        EXCEPT THAT XCON(l) IS TOTAL ENERGY IN THE SAMPLE SEQUENCE; 
C XGJC—GRADIENT NORM; 
C NST—TOTAL NUMBER OF SAMPLES BEING CONSIDERED; 
C 
C 
C 

INTEGER YES 
REAL»8 B(300,300),GJC(300),F(300),XGJC,AR,XJ,XCON(10),D(10),WEI,WR 
REAL*8 ACC,XMAX,XIND 
real*8 WMEAN, WMEANR 
DIMENSION RATE(10),LIMIT(2) 
COMMON B,WEI,IPM(4),WMEAN 

C 
C INPUT IPM(4)(NSAM,NCON,NRES,NBAND) FROM TERMINAL. 

WRITE!6,1000) 
1000  FORMAT!IX,'INPUT THE PARAMETERS(NSAM,NCON,NRES,NBAND)i•, 

1 /,IX,'(INTEGERS ONLY! AND NCON<-10, NSAM*NCON<=300,NCON<=NRES)') 
READ(5,1010) (IPM(I),1-1,4) 

1010  FORMAT!I) 
C 
C CHECK DATA. 

write(6,1212)   (iprafi),i-1,4) 
1212     formatdx,•NSAM,NCON,NRES,NBANDi    •,414,lx,lo) 

CALL  BMATX 
NST=IFM(1)*IPM(2) 

C 
C PROGRAM INITIALIZES F(*) AS A RECTANGULAR WINDOW IN THE MIDDLE . 

DO 20 I-1,NST 
20 F(I)=0. 

NST2=NST/2 
DO 21 I=»l,IFM(l)/2 
F(NST2+I)-1. 

21 F(NST2-I+1)—1. 
IF(FLOAT(NST2).NE.FLOAT!NST)/2.) F(NST2+IPM(1)/2+l)-l. 

C 
C DESIGNER INITIALIZES F(*) THROUGH FILE DATA.DAT 
3110  WRITE(6,1110) 
1110  FORMAT!IX,'DO YOU WANT TO ININIALIZE THE SIGNAL F? 
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KYES-1  OR NO-0) •) 
READ(5,1016)   YES 

1016     format(I) 
IF(YES.NE.l)   GOTO  2000 
write(6,1919) 

1919  format(lx,'initial signal is read from data.dat. 
OPEN(UNIT-1,FILE-'DATA.DAT',STATUS-'OLD') 
READ(1,1130)(F(I),I-1,NST) 
F0RMAT(1X,5F13.8) 

',I2,')i 

1130 
C 
C INPUT D(*),RATE(*),WEI,WR,WMEAN,WMEANR,ERROR,LIMITA AND LIMITB FROM TERMINAL. 
2000 WRITE(6,1020) IPM(2) 
1020  FORMAT(IX,'INPUT INITIAL (D(I).I-l, 

1/.1X,•(REAL NUMBERS ONLY!)') 
RBAD(5,1140) (D(I),I-1,IPM(2)) 

1140  FORMAT(F) 
WRITE(6,1150) IPM(2) 

1150  FORMAT(IX,'INPUT (RATE(I),1-1,',12,•)I 
1/,1X,'(REAL NUMBERS ONLYI)•) 
READ(5,1140)(RATE(I),1-1,IPM(2)) 
WRITE(6,1152) 

1152 FORMAT(IX,'INPUT WEI AND WR') 
READ(5,1153)WEI,WR 

1153 FORMAT(F) 

WRITE(6 1154) 
1154  FORMAT(lX,'INPUT WMEAN AND WMEANRi') 

READ(5,1153) WMEAN,WMEANR 

WRITE(6,1160) 
1160  F0RMAT(1X,'INPUT ERRORi' 

READ(5,1131) ERROR 
1131  FORMAT(F) 

WRITE(6,1180) 
1180  FORMAT(IX,•INPUT LIMITA 

I'dNTEGBRS ONLY! ) ' ) 
READ(5,1011)(LIMIT(I),I- 
FORMAT(I) 1011 

C 
C ITERATION 
3000 

1040 

100 

A STARTS. 
DO 25 ITERA-1,LIMIT(1) 
WRITE(6,1040) ITERA 
FORMAT!/,IX,'ITERATION 
DO 100 I-1,IPM(2) 
D(I)-D(I)*RATE(I) 
WEI-WEI*WR 

WMEAN-WMEAN*WMEANR 

CALL SGJC(D,F,GJC) 

AND LIMITB«',/,lX, 

1,2) 

,13) 

C ITERATION B STARTS. 
DO 30 ITERB-1,LIMIT(2) 
CALL ARPHA(D,F,GJC,AR) 
DO 60 J-1,NST 

60    F(J)-F(J)-AR*GJC(J) 
CALL SGJC(D,F,GJC) 
XGJC-0. 
DO 40 J-1,NST 

40    XGJC-XGJC+GJC(J)*GJC(J) 
XGJC-(XGJC«*0.5)/FLOAT(NST) 
IF(XGJC.LT.ERROR) GOTO 50 

30   CONTINUE 
C 
C ITERATION B ENDS. 

WRITE(6,1050) XGJC 
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1050  FORMAT(IX,1LIMIT OF ITERATION B REACHED.', 
1/,29X,'GRADIENT NORM-',F13.8) 

50   XJ-0. 
DO 70 J-1,NST 
ACC-0. 
DO 73 I-l.NST 

73    ACC-ACC+B(J,I)*F(I) 
70    XJ-XJ+F(J)*ACC 

DO 80 J-1,IPM(2) 
XCON(J)-0. 
NJ-(J-1)*IPM(1) 
DO 80 I-1,NST-NJ 

80 XCON(J)-XCON(J)+F(I)*F(I+NJ) 
DO 75 J-2,IPM(2) 

75   XCON(J)-XCON(J)/XCON(1) 
XJ-XJ/XCON(l) 

C 
c compute the meant 

ACC-0. 
DO 81 J-1,NST 

81 ACC-ACC+F(J) 
ACC-ACC/NST 

c 
WRITE(6,1060) XJ 

1060  FORMAT!11X,•IN-BAND ENERGY-',F13.8) 
WRITE(6,1070) (I,XCON(I),I-l,IPM(2)) 

1070 FORMATdX, 'CONSTRAINT' , 12, '-' ,F13.8) 
c  

WRITE)6,1071) ACC 
1071 FORMATdX,'MEAN - ',F13.8) 
c 
25   CONTINUE 
C 
C ITERATION A ENDS. 

WRITE)6,1090) 
1090  FORMATI/,IX,'THE PREVIOUS PROCESS COMPLETED.') 

WRITE(6,1092) (D(I),1-1,IPM(2)) 
1092  FORMATdX,'D-',4F15. 3) 

WRITE(6,1102)WEI,WR 
1102 FORMATdX, ' WEI-', F13 . 3, 2X, 'WR-',F13.3) 
c- 

WRITE(6,1103) WMEAN.WMEANR 
1103  FORMATdX, ' WMEAN- ' ,F13 . 3, 2X, • WMEANR-' ,F13. 3 ) 
c 

WRITE!6,1091) 
1091  FORMATdX,'DO YOU WANT TO CONTINUE? (YES-1 OR NO-0 ) ' ) 

READ(5,1016) YES 
IF(YES.NE.l) GOTO 3010 
WRITE(6,2050) 

2050  FORMATdX,'USING THE SAME PARAMETERS AS SET BEFORE ? 
1(YES-1 OR NO-0)') 
READ(5,1016) YES 
IF(YES.EQ.l) GOTO 3000 
GOTO 2000 

C 
C DISPLAY FINAL SIGNAL AT TERMINAL. 
3010 WRITE(6,1080) (F{I),I-1,NST) 
1080  FORMATdX,'F-',5F13.8) 
C 
C STORE RESULTS IN TPULSE.DAT AFTER SCALING. 

XMAX-0. 
DO 12 I-1,NST 
IF(XMAX.GE.DABS(F(I))) GOTO 12 
XMAX-DABS(Fd) ) 
XIND-F(I) 

12   CONTINUE 
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DO 22 I-1,NST 
22   F(I)-F(I)/XIND 

WRITE(2,4000) (I-1,F(I),I-1,NST) 
4000  FORMAT(IX,13,F15.10) 

WRITE(2,4010)(IPM{I),1-1,4) 
4010  FORMAT('NSAM-',13,'  NCON-M3,'  NRES-',I3,'  NBAND-',I3) 

WRITE(2,1060) XJ 
WRITE(2,1070)(I,XCON(I),I-1,IPM(2)) 

c  
WRITE(2,1071) ACC 

c 
STOP 
END 

C  
C GENERATION OP MATRIX B» 
C INPUTIIPM(4)(NSAM,NCON!NRES,NBAND)--THROUGH COMMON STATEMENT 
C OUTPUTtMATRIX B—THROUGH COMMON STATEMENT. 

SUBROUTINE BMATX 
REAL*8 B(300,300),PI,XI,XJ,XNF,XBAND,WEI 
COMMON B,WEI,IPM(4) 
XBAND-FLOAT(IPM(4)) 
XNF-FLOAT(IPM(3)*IPM(1)) 
PI-3.14159265359D0 
NST-IPM(1)*IPM(2) 
NFT-IPM(1)*IPM(3) 
DO 20 I-1,NST 
XI-FLOAT(I) 
DO 10 J-1,I-1 
XJ-FLOAT(J) 
B(I,J)-DSIN(2.*PI*(XI-XJ)*(XBAND+0.5)/XNF)/DSIN(PI*(XI-XJ)/XNF) 

10    B(J,I)-B(I,J) 
B(I,I)-2.*(XBAND+0.5) 

20   CONTINUE 
DO 5 I-l.NST 
DO 5 J-1,NST 

5    B(I,J)-B(I,J)/DFLOAT(NFT) 
RETURN 
END 

C  
C GENERATION OF GRADIENT GJC. 
C INPUTiWEIGHT VECTOR D(*)jSIGNAL VECTOR F{*); 
C INPUT THRU COMMONi IPM(4)(NSAM,NCON,NRES,NBAND);MATRIX B;WMEAN 
C OUTPUTtGRADIENT VECTOR GJC(*). 

SUBROUTINE SGJC(D,F,GJC) 
REAL*8 B(300,300),GJC(300),F(300),X,Y,X1,Y1,XX(10),D{10),WEI 
REAL*8 WMEAN 
COMMON B,WEI,IPM(4),WMEAN 
NST-IPM(1)*IPM(2) 
NFT-IPM(1)*IPM(3) 
DO 5 K-1,IPM(2) 
XX(K)-0. 
NK-(K-1)*IPM(1) 
DO 15 M-1,NST-NK 

15   XX(K)-XX(K)+F(M)*F(M+NK) 
5    CONTINUE 

XX(1)-XX(1)-1. 
DO 10 I-1,NST 
X-0. 
DO 20 K-1,IPM(2) 
NK-(K-1)*IPM(1) 
Xl-0. 
Yl-0. 
IP((I+NK).LE.NST) X1-F(I+NK) 
IF((I-NK).GE.l) Yl-F(I-NK) 
Y-XX(K)*(X1+Y1) 
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20   X-X+Y*D(K) 
Y-0. 
DO 40 J-1,NST 
DEL-O. 
IF(I.EQ.J) DEL-1. 

40    Y-Y+(B(I,J)-DEL)*F(J) 
10   GJC(I)-2.*(X-Y*WEI) 
c 
c add the component due to the constraint on meant 

X-0 
DO 50 I-l.NST 

50   X-X+F(I) 
X-X/NST**2 
DO 60 I-1,NST 

60   GJC(I)-GJC(I)+2.*WMEAN*X 
c 

RETURN 
END 

C  
C FIND A OPTIMUM STEP LENGTH(AR) IN A GIVEN DIRECTION. 
C INPUT:WEIGHT VECTOR D(*);SIGNAL VECTOR F(*); 
C INPUTiGRADIENT VECTOR GJC(*). 
C INPUT THRU COMMONtIPM(4)(NSAM,NCON,NRES,NBAND);MATRIX B;WMEAN 
C OUTPUT:OPTIMUM STEP LENGTH AR. 

SUBROUTINE ARPHA(D,F,GJC,AR) 
REAL*8 B(300,300),GJC(300),F(300),AR,GJC1,X,Y,D(10),WBI 
REAL*8 AA(10),BB(10),CC(10),DD,EE,T(4),ACC 
real*8 wmean 
COMMON B,WEI,IPM(4),wmean 
NST-IPM(1)*IPM(2) 
NFT-IPM(1)*IPM(3) 
DO 20 K-1,IPM(2) 
NK-(K-1)*IPM(1) 
AA(K)-0. 
BB(K)-0. 
CC(K)-0. 
DO 20 M-1,NST-NK 
AA(K)-AA(K)+F(M)*F(M+NK) 
BB(K)-BB(K)+GJC(M)*F(M+NK)-t-F(M)*GJC(M+NK) 

20    CC(K)-CC(K)+GJC(M)*GJC(M+NK) 
AA(1)-AA(1)-1. 
DD-0. 
EE-0. 
DO 30 I-1,NST 
ACC-0. 
DO 35 J-1,NST 
DEL-O. 
IF(I.EQ.J) DEL-1. 

35   ACC-ACC+(B(I,J)-DEL)*GJC(J) 
DD-DD+GJC(I)*ACC 

30   EE-EE+F(I)*ACC 
DD-DD*WEI 
EE-EE*WEI 
DO 40 1-1,4 

40   T(I)-0. 
DO 50 K-1,IPM(2) 
T(4)-T(4)+D(K)*CC(K)*CC(K) 
T(3)-T(3)+D(K)*BB(K)*CC(K) 
T(2)-T(2)+D(K)*(2.*AA(K)*CC(K)+BB(K)*BB(K)) 

50   T(1)-T(1)+D(K)*AA(K)*BB(K) 
T(4)-2.*T(4) 
T(3)--3.*T(3) 
T(2)—DD+T(2) 
T(1)-EE-T(1) 

c    Note: The gradient along the 1-D path should be expressed as 
c 2*(T(1)+T(2)*ar+T(3)*ar**2+T(4)*ar**3). 
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c 
c add the component due to the constraint on mean« 

dd-0. 
ee-0. 
do 55 i"l,nst 
dd-dd+f(i) 

55   ee-ee+gjc(i) 
dd-dd/nst 
ee-ee/nst 
t(1)-t(1)-wmean*dd*ee 
t(2)-t(2)+wmean*ee*ee 

c 
IF(T(l).LE.O.) GOTO 60 
STOP 'ERROR 2: wrong direction in 1-D search.• 

60   X-0. 
Y-0.0000001 
DO 70 1-1,100 
GJC1-0. 
DO 80 J-1,4 

80   GJC1-GJC1+T(J)*Y**(J-1) 
IF(GJC1.GE.0.) GOTO 90 
X-Y 

70   Y-2.*Y 
STOP 'ERROR 3: the other side of the valley could not be reached.' 

90   DO 100 1-1,100 
AR-(X+Y)/2. 
GJC1-0. 
DO 110 J-1,4 

110  GJC1-GJC1+T(J)*AR**(J-1) 
IF(GJC1.GT.0.) Y-AR 
IF(GJC1.LB.0.) X-AR 
IF(ABS(X-Y).LT.1.E-10) GOTO 45 

100  CONTINUE 
STOP 'ERROR li convergence in 1-D search did not occur.' 

45   RETURN 
END 
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Appendix A2:  Sample Output: TPULSE.DAT 

0 -0 .0063850000 
1 -0 .0132712891 
2 -0 .0204579788 
3 -0 .0270813198 
4 -0 .0321861728 
5 -0 .0348180783 
6 -0 .0341271503 
7 -0 .0294743808 
8 -0 .0205297471 
9 -0 .0073512550 

10 0 .0095651566 
11 0 .0292730909 
12 0 .0504059947 
13 0 .0712521744 
14 0 .0898723721 
15 0 .1042535544 
16 0 .1124886082 
17 0 .1129682948 
18 0 .1045694324 
19 0 0868221517 
20 0 .0600393773 
21 0 0253935161 
22 -0 0150713911 
23 -0 0584992558 
24 -0 1013549779 
25 -0 1396278262 
26 -0 1690900018 
27 -0 1855978616 
28 -0 1854252520 
29 -0 1655839682 
30 -0 1241206550 
31 -0 0603617531 
32 0 0249158261 
33 0 1294061761 
34 0 2492998162 
35 0 3794175417 
36 0 5134491901 
37 0 6442857369 
38 0 7644256221 
39 0 8664298739 
40 0 9433959791 
41 0. 9894179579 
42 1. 0000000000 
43 r°- 9723933671 
44 

ro. 9058309560 
45 0. 8016406199 
46 0. 6632266012 
47 0. 4959176201 
48 0. 3066896079 
49 0. 1037800503 
50 -0. 1037800503 
51 -0. 3066896079 
52 -0. 4959176201 
53 -0. 6632266012 
54 -0. 8016406199 
55 -0. 9058309560 
56 -0. 9723933671 
57 -1. 0000000000 
58 -0. 9894179579 
59 -0. 9433959791 
60 -0. 8664298739 
61 -0. 7644256221 
62 -0. 6442857369 
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63 -0.5134491901 
64 -0.3794175417 
65 -0.2492998162 
66 -0.1294061761 
67 -0.0249158261 
68 0.0603617531 
69 0.1241206550 
70 0.1655839682 
71 0.1854252520 
72 0.1855978616 
73 0.1690900018 
74 0.1396278262 
75 0.1013549779 
76 0.0584992558 
77 0.0150713911 
78 -0.0253935161 
79 -0.0600393773 
80 -0.0868221517 
81 -0.1045694324 
82 -0.1129682948 
83 -0.1124886082 
84 -0.1042535544 
85 -0.0898723721 
86 -0.0712521744 
87 -0.0504059947 
88 -0.0292730909 
89 -0.0095651566 
90 0.0073512550 
91 0.0205297471 
92 0.0294743808 
93 0.0341271503 
94 0.0348180783 
95 0.0321861728 
96 0.0270813198 
97 0.0204579788 
98 0.0132712891 
99 0.0063850000 

NSAM- 25  NCON-  4  NRES-100  NBAND-130 
IN-BAND ENERGY-   0.99978340 

CONSTRAINT 1-   1.00120665 
CONSTRAINT 2-   0.00025773 
CONSTRAINT 3-   0.00091064 
CONSTRAINT 4-   0.00112901 
MEAN 0.00000000 
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Rome Laboratory 

Customer Satisfaction Survey 

RL-TR- 

Please complete this survey, and mail to RL/IMPS, 
26 Electronic Pky, Griffiss AFB NY 13441-4514. Your assessment and 
feedback regarding this technical report will allow Rome Laboratory 
to have a vehicle to continuously improve our methods of research, 
publication, and customer satisfaction. Your assistance is greatly 
appreciated. 
Thank You 

Organization Name: (Optional) 

Organization POC: (Optional) 

Address: 

1.   On a scale of 1 to 5 how would you rate the technology 
developed under this research? 

5-Extremely Useful    1-Not Useful/Wasteful 

Rating  

Please use the space below to comment on your rating.  Please 
suggest improvements.  Use the back of this sheet if necessary. 

2.  Do any specific areas of the report stand out as exceptional? 
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3. Do any specific areas of the report stand out as inferior? 

Yes  No  

If yes, please identify the area(s), and comment on what 
aspects make them "stand out." 

4. Please utilize the space below to comment on any other aspects 
of the report. Comments on both technical content and reporting 
format are desired. 
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